微分積分学第一(LAS.M101-06)

チェイン・ルール

山田光太郎

kotaro@math.titech.ac.jp

http://www.official.kotaroy.com/class/2024/calc-1/

東京工業大学

2024/07/04

定理(陰関数定理の特別な場合; 定理 4.12)

領域 $D \subset \mathbb{R}^2$ 上の C^k -級関数 $F \colon D \to \mathbb{R}$ と $F(x_0, y_0) = 0$ をみたす点 $(x_0, y_0) \in D$ をとる.もし, $F_y(x_0, y_0) \neq 0$ が成り立っているならば,P を含む領域 $U \subset D$ と, \mathbb{R} のある開区間 I 上で定義された C^k -級の 1 変数関数 $\varphi \colon I \to \mathbb{R}$ で次をみたすものが存在する:

$$(x,y) \in U$$
 かつ $F(x,y) = 0$ \Leftrightarrow $x \in I$ かつ $y = \varphi(x)$ とくに各 $x \in I$ に対して $F(x,\varphi(x)) = 0$ が成立する.

$$F(\alpha, y) = x^2 + y^2 - 1$$

$$F_x = 2x$$

$$F_y = 2y$$

$$F_{y=0} \Rightarrow y = 0$$

$$y = \sqrt{1 - x^2}$$

$$x = \xi(y)$$

$$x = \xi(y)$$

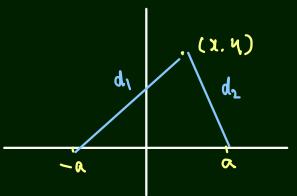
$$y = \sqrt{1 - x^2}$$

$$y = \sqrt{1 - x^2}$$

例:Cassinian Oval カッシニの概形

Q > 0

切りせるといった。
$$((x-a)^2 + y^2)((x+a)^2 + y^2) = b^4$$

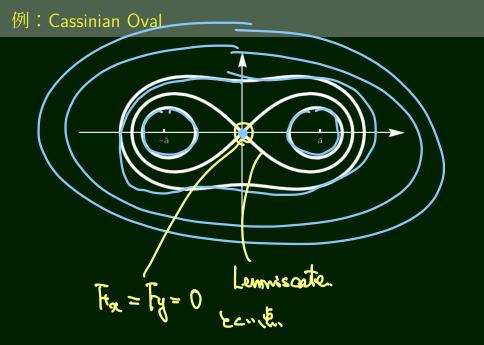


$$d_1 \cdot d_2 = b^2$$

微分積分学第一

チェイン・ルール

024/07/04



陰関数の微分法

- ▶ 講義資料や講義の誤りの指摘
- ▶ 講義内容に関する質問

提出:所定の用紙でT2SCHOLAに 締切:7月4日 17:00 JST