位相空間論第二(講義)(MTH.B202)

ツォルンの補題

山田光太郎

kotaro@math.titech.ac.jp

http://www.official.kotaroy.com/class/2024/top-2

東京工業大学理学院数学系

2024/06/18

ツォルンの補題

定理 (ツォルンの補題;定理 11.1)

X:帰納的順序集合; $x_0 \in X$

 $\Rightarrow X$ の極大元 m で $x_0 \leq m$ となるものが存在する

(X, \leq) :順序集合

- ▶ X が帰納的順序集合:任意の全順序部分集合が上に有界.
- ▶ $A (\subset X)$ が上に有界: A の上界が存在する.
- ▶ $\xi \in X$ が A ($\subset X$) の上界 $\stackrel{\mathsf{def}}{\Leftrightarrow}$ 任意の $a \in A$ に対して $a \leq \xi$.
- \triangleright a が X の極大元:a < x となる $x \in X$ が存在しない.

位相空間論第二(講義) ツォルンの補題 2024/06/18

整列集合

(*X*, ≦):順序集合

定義 (定義 10.17)

 (X, \leq) が整列集合

 $\Leftrightarrow X$ の任意の空でない部分集合は最小元をもつ.

整列集合の比較定理

 (X, \leq) :整列集合; $a \in X$

$$X_a := \{x \in X \mid x < a\}$$
 (X の a-切片)

ツォルンの補題

定理 (定理 11.12)

位相空間論第二 (講義)

整列集合 X, Y は次のいずれかを唯一つ満たす:

- 1. X, Y は順序同型,
- 2. X はある Y_y ($y \in Y$) に順序同型,
- 3. Y はある X_x ($x \in X$) に順序同型.

超限帰納法

 (X, \leq) :整列集合; $x_0 := \min X$

命題 (超限帰納法;命題 10.22)

p(x): $x \in X$ に関する命題.

- 1. X の最小元 x_0 に対して $p(x_0)$ は真.
- 2. $x \in X \setminus \{x_0\}$ を固定するとき

y < x なる任意の y に対して p(y) が真 $\Rightarrow p(x)$ も真 $(*_x)$

が成り立つ.

このとき、任意の $x \in X$ に対して p(x) は真.

ツォルンの補題の証明1

定理 (ツォルンの補題; 定理 11.1)

X:帰納的順序集合; $x_0 \in X$

 $\Rightarrow X$ の極大元 m で $x_0 \le m$ となるものが存在する

$$\Lambda := \{S \subset X; S \ \text{tx}_0 \ \text{を最小元とする整列部分集合} \}$$
 $S^+ := \{x \in X; x \ \text{tx}_0 \ \text{の上界} \}$

主張

$$S^+ \setminus S = \emptyset$$
 なる $S \in \Lambda$ が存在する

 $\Rightarrow x_S \in S^+$ は極大元

位相空間論第二(講義) ツォルンの補題

ツォルンの補題の証明2

定理 (ツォルンの補題; 定理 11.1)

X: 帰納的順序集合; $x_0 \in X$

 $\Rightarrow X$ の極大元 m で $x_0 \leq m$ となるものが存在する

$$\Lambda := \{S \subset X; S \ \text{tx}_0 \ \text{を最小元とする整列部分集合} \}$$
 $S^+ := \{x \in X; x \ \text{tx}_0 \ \text{の上界} \}$

仮定

- ▶ すべての $S \in \Lambda$ に対して $S^+ \setminus S \neq \emptyset$
- ▶ X に極大元が存在しない.

時 分に再開します.