Advanced Topics in Geometry A1 (MTH.B405)

Ordinary Differential Equations

Kotaro Yamada

kotaro@math.sci.isct.ac.jp

101a1: No val o j : 00m, 01abb, 2020, 600m a

Institute of Science Tokyo

2025/04/25

Linear ordinary differential equations

Linear ordinary differential equations in matrix forms

 $\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0, \qquad \text{unkowns}.$

Ω(t), B(t): n×n-matrix valued Co-functions. (given data)

X(t): unknown function mxn matrix-valued.

No: the mitial condition

Ordinary Differential Equations

Advanced Topics in Geometry A1

Preliminaries

homogenious estuation Proposition (Prop. 2.8) Assume two C^{∞} matrix-valued functions X(t) and $\Omega(t)$ satisfy $X(t)\Omega(t)$ $X(t_0) = X_0.$ Then $(\det X_0) \exp \int_{-\tau}^{\tau} \operatorname{tr} \Omega(\tau) d\tau.$ In particular, if $X_0 \in \operatorname{GL}(\overline{n}, \mathbb{R})$, then $X(t) \in \operatorname{GL}(n, \mathbb{R})$ for all t.

$$\frac{d}{dt} X = X\Omega$$

$$\frac{d}{dt} (dex X) = trace (\hat{X} \frac{dX}{dX})$$

$$= trace (\hat{X} \frac{dX}{dX})$$

$$= (\hat{M} \frac{X}{X} \frac{X}{X} \frac{1}{X} \frac{1}{X$$

Preliminaries

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Corollary (Cor. 2.9)

 $\overline{If}\operatorname{tr}\Omega(t)=0$, then $\det X(t)$ is constant. In particular, if $X_0 \in \mathrm{SL}(n,\mathbb{R}), X$ is a function valued in $\mathrm{SL}(n,\mathbb{R}).$

rnrn-matrices with real compenends)

L with det = 1

Preliminaries

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Proposition (Prop. 2.10)

Assume $\Omega^T + \Omega = O$. It is skew -symmetric. If $X_0 \in \overline{O(n)}$ (resp. $X_0 \in SO(n)$), O(n): or they only then $X(t) \in O(n)$ (resp. $X(t) \in SO(n)$) for all t.

$$\frac{d}{dt}(X X) = \frac{dX}{dt}X^{T} + \chi \frac{dX}{dt}$$

$$= \frac{1}{1}\chi(X) \times \frac{1}\chi(X) \times \frac{1}{1}\chi(X) \times \frac{1}\chi(X) \times$$

Linear ordinary differential equations.

Proposition (Prop. 2.12)

Let $\Omega(t)$ be a C^{∞} -function valued in $\mathrm{M}_n(\mathbb{R})$ defined on an interval I. Then for each $t_0 \in I$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,\mathrm{id}}(t)$ such that

$$V$$
 $\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = \mathrm{id}.$

Linear ordinary differential equations.

Corollary (Cor. 2.13)

There exists the unique matrix-valued C^{∞} -function $X_{t_0,X_0}(t)$ defined on I such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \quad X(t_0) = X_0 \quad (X(t) := X_{t_0, X_0}(t))$$

In particular, $X_{t_0,X_0}(t)$ is of class C^{∞} in X_0 and t.

Non-homogenious case

Proposition (Prop. 2.14)

Let $\Omega(t)$ and B(t) be matrix-valued C^{∞} -functions defined on I. Then for each $t_0 \in I$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function defined on I satisfying

$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0.$$

Fundamental Theorem

Theorem (Thm. 2.15)

Let I and U be an interval and a domain in \mathbb{R}^m , respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞} -functions defined on $I \times U \ (\alpha = (\alpha_1, \dots, \alpha_m))$. Then for each $t_0 \in I$, $\alpha \in U$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function $\overline{X(t)} = \overline{X_{t_0,X_0,\boldsymbol{\alpha}}}(t)$ defined on I such that

$$\frac{dX(t)}{dt} = X(t)\underline{\Omega(t, \mathbf{Q})} + \underline{B(t, \mathbf{Q})}, \qquad X(t_0) = X_0. \tag{1}$$
wer,
$$\text{Smooth in } \mathbf{X}$$

Moreover,

$$I \times I \times \mathrm{M}_n(\mathbb{R}) \times U \ni (t, t_0, X_0, \boldsymbol{\alpha}) \mapsto X_{t_0, X_0, \boldsymbol{\alpha}}(t) \in \mathrm{M}_n(\mathbb{R})$$

is a C^{∞} -map.

Application to Space Curves

- $ightharpoonup \gamma \colon I o \mathbb{R}^3$: a space curve parametrized by the arclength.
- ► $e = \gamma'$. | $e = \frac{1}{2}$ ($e = \frac{1}{2}$ ($e = \frac{1}{2}$)
- $ightharpoonup \kappa = |e'|$; we assume $\kappa > 0$ (the curvature)
- $lackbox{ } n=e'/\kappa$ (the principal normal)
- $lackbox{b} = e \times n$ (the binormal)
- $au = -b' \cdot n$ (the torsion)

Front Frame

Fram

e, in. b) orthonormal

 $\langle (S) = \left(R \cos \frac{S}{\sqrt{a^2 + b^2}} \right) = \left(R \cos \frac{S}{\sqrt{a^2 + b^2}} \right)$

constant

Frenet-Serret

Procedure
$$\frac{d\mathcal{F}}{ds} = \mathcal{F}\Omega, \quad \Omega = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}. \quad \text{Y(s)} \geq \text{P(s)}$$
Procedure the curve from KeC.

$$k. \ 7: \text{ gluon function}$$

$$\Rightarrow \quad \text{Linear } 0. \ D. \ E$$

$$\Rightarrow \quad \text{Fundamental} \quad \Rightarrow \quad \text{SO(3)}$$
Humans.

$$\Rightarrow \quad \text{Finear } 0. \ D. \ E$$

The Fundamental Theorem for Space Curves

Theorem (Thm. 2.17)

Let $\kappa(s)$ and $\tau(s)$ be C^{∞} fractions defined on an interval I satisfying $\kappa(s)>0$ on I.

Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ , respectively. Moreover, such a curve is unique up to transformation $x \mapsto Ax + b \ (A \in SO(3), b \in \mathbb{R}^3)$ of \mathbb{R}^3 .

· K & T determine a space curve.

Exercise 2-1

Problem (Ex. 2-1)

Find the maximal solution of the initial value problem

$$\frac{dx}{dt} = x(1-x), \qquad x(0) = \mathbf{0}$$

where a is a real number.

Exercise 2-2

Problem (Ex. 2-2)

pendulum

Let x=x(t) be the maximal solution of an initial value problem of differential equation

•
$$\frac{d^2x}{dt^2} = -\sin x$$
, $x(0) = 0$, $\frac{dx}{dt}(0) = 2$.

- Show that $\frac{dx}{dt} = 2\cos\frac{x}{2}$.
- lacksquare Verify that x is defined on \mathbb{R} , and compute $\lim_{t \to \pm \infty} x(t)$.

Exercise 2-3

Problem (Ex. 2-3)

Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature κ and torsion τ satisfy

$$\kappa = \tau = \frac{1}{\sqrt{2}(1+s^2)}.$$