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The Gauss-Weingarten formulas

p = p(u1, u2) : a parametrized surface
⌫ = ⌫(u1, u2) : the unit normal vector field

F = (p,1, p,2, ⌫) : the Gauss Frame

The Gauss-Weingarten formula:

@F
@uj

= F⌦j (j = 1, 2)
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The Gauss and Codazzi equations

h11,2 � h21,1 =
X

j

⇣
�j
21h1j � �j

11h2j

⌘

h12,2 � h22,1 =
X

j
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Kds2 =
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(h11h22 � h12h21)

�
= K

�
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Exercise 5-1

Problem (Ex. 5-1)
Assume L = N = 0, that is, II = 2M dudv = 2h12 du1 du2, Prove
that, if the Gaussian curvature K is negative constant,

Ev = Gu = 0, that is, g11,2 = g22,1 = 0.
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Codazzi equations M2= -kLEG-F)
-

#
Mu = M(ti - Pic)-
=-Pic)2

=>

FERFEGU) does not depda
value of K.

=> (E)= (i)
= Er = Guzenn-singular metrix



ds"= Edu + 2 Fdudr + G du

I = 2 Manch (proPu) = &Ph
Y

· Ev= O , E = Eln)s Gu= 0
,

G = f(r) >

For simplicity assume K= -1

EG-F"= M2 (a-jdu
· /Edu= /Edu = y = Ed--O

dsit'de + 2Eddy + ↓

dy => 28

Asympt = Echidy 1cheby



Q and A

Q: I could see in problem 5-1 that E and G are
functions of u and v, respectively, but the
geometrical meaning is not clear, even with the
assumptions of the problem. The assumption of
problem 5-1 seems to be a very strong, but not much
can be said about its geometrical properties, can it?
Can you say much about the geometrical properties?
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"geometric" properties.



Exercise 5-2

Problem (Ex. 5-2)
Assume F = 0 and E = G = e

2�, where � is a function in (u, v).
Let z = u+ iv (i =

p
�1) and define a complex-valued function q

in z by
q(z) :=

L(u, v)�N(u, v)

2
� iM(u, v).

Prove that the Codazzi equations are equivalent to

@q

@z̄
= e

2� @H

@z
,

where H is the mean curvature, and

@
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Q and A

Q: I could see that the calculations would show the
conclusion, but where did you come up with this q(z)
or whatever it is? Is it a function with a different
computational or geometric meaning behind it?
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· Why do we use complex parameter zed+ iv ?

dse(dn +dus)
= S En

= IHr
-

"Militation(d Su = Fin
->de /usr Carly-

Ev = -yu Rieman
-

# Util 3 + i : holamashic



z = U + iV dz = du + =du) au = Edz + dE)&

de = du-idu dr= (dz-dE
I = Ldu + 2 Mdudu + Nov

= * )L(dz +de)2 - 2iM (dz+ de) (dz-dE)
- N(dz-dE)")
=in (2

.
0) part

+ [+Ndest (1 . 1) put
+ (L- N + 2iM)de-)(0 .

2) part



Codazzi equation C-Roperate

-i)
Eat =0 g satisfies the Candy

Rieman

# g : holomorphic.

If H : const-
"Codazzi of "ave "easy=0:


