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3 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider an m-tuple of n x n-matrix valued
C*°-maps
(3.1) 2;: R™ > U — M,(R) (j=1,...,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

0X .
(3:2) @:Xﬂj (j=1,....m), X(Po) = Xo,
where Pg = (u},...,u') € U is a fixed point, X is an n x n-matrix valued unknown, and X, €
M, (R).

Proposition 3.1. If a C*®-map X: U — M,(R) defined on a domain U C R™ satisfies (3.2)
with Xo € GL(n,R), then X(P) € GL(n,R) for all P € U. In addition, if £2; (j =1,...,m) are
skew-symmetric and Xo € SO(n), then X (P) € SO(n) holds for all P € U.

Proof. Since U is connected, there exists a continuous path ~g: [0,1] — U such that v(0) = Py
and vo(1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Leel3]), there exists
a smooth path v: [0,1] — U joining Py and P approximating 0. Since X := X o satisfies (3.4)
with X (0) = X, Proposition 2.8 yields that det X (1) # 0 whenever det Xy # 0. Moreover, if £2;s
are skew-symmetric, so is §2,(t) in (3.4). Thus, by Proposition 2.10, we obtain the latter half of
the proposition. O

Proposition 3.2. If a matriz-valued C* function X: U — GL(n,R) satisfies (3.2), it holds that
002; 08

(3.3) ok~ Bur = % — 25

for each (4,k) with 1 < j <k <m.

Proof. Differentiating (3.2) by u*, we have

02X X 092; 992;
uFoul  Ou gur X@ X(8 k

+Qk9>

On the other hand, switching the roles of j and k, we get

02X 082
o QuP _X<3 R Qk)

Since X is of class C'°°, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X € GL(n,R), the conclusion follows. O

The equality (3.3) is called the integrability condition or compatibility condition of (3.2).
The chain rule yields the following:

Lemma 3.3. Let X: U — M,(R) be a C*-map satisfying (3.2). Then for each smooth path
~v: I — U defined on an interval I C R, X := X oy : I — M, (R) satisfies the ordinary differential
equation

(3.4) E(t) _ )A((t)Q»y(t) _Q,y(t) = Z 250 ’Y(t)%(t)

on I, where y(t) = (u!(t),...,u™(t)).
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Lemma 3.4. Let 2;: U — M,(R) (j = 1,...,m) be C*-maps defined on a domain U C R™
which satisfy (3.3). Then for each smooth map

o: D3 (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) € U
defined on a domain D C R2, it holds that

o ow

. T T =

(3.5) T W+WT =0,

where
T 0w 0w~

(3.6) T::Zrzjft, W::Z(Zj—w (2; == 2;00).
j=1 j=1

Proof. By the chain rule, we have

or 092, OuF oud i ~ 9%ud

w = 2 out ow ot 22 guar

OW O~ 092; Ou® ow in: ~ 0%l

ot A ouk 9t dw 7 otow

J:k: J=1
_ o2, Oud OuF "L 9%
Z 3w ot 0w 2= orgw
Hence

or ow i": <arzj a(zk> ouF ou

ow ot ouk  oui ) dw ot
7,k=1

Ui ouk ou’

= 2 (8- 28) 5050
7,k=1

" Ou ~ OuF ~ Ou T Ul
- (ZQ&S> <Z ’“aw>_<z aw> (Z at)

j=1 k=1 k=1 j=1
=TW — WT.

Thus (3.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 3.5. Let £2;: U = M, (R) (j =1,...,m) be C*-functions defined on a simply connected
domain U C R™ satisfying (3.3). Then for each Py € U and Xy € M,,(R), there exists the unique
n X n-matriz valued function X : U — M, (R) satisfying (3.2). Moreover,

o if Xo € GL(n,R), X(P) € GL(n,R) holds on U,
o if Xo € SO(n) and 2; (j =1,...,m) are skew-symmetric matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 3.1. We show the existence of X: Take
a smooth path v: [0,1] — U joining Py and P. Then by Theorem 2.15, there exists a unique
C>-map X: [0,1] — M, (R) satisfying (3.4) with initial condition X (0) = Xj.

We shall show that the value X (1) does not depend on choice of paths joining Py and P. To
show this, choose another smooth path ¥ joining Py and P. Since U is simply connected, there
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exists a homotopy between 7 and 4, that is, there exists a continuous map oq: [0,1] x [0,1] 2
(t,w) — og(t,w) € U satistying

U()(t» 0) = V(t)a U()(tv 1) = ﬁ(t%

(3.7) o0(0,w) =Py, op(l,w) = P,

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Leel3]) again, there exists a smooth
map o: [0,1] x [0,1] — U satisfying the same boundary conditions as (3.7):

(3.8) o(t,0) =(t), o(t,1) =4(t),
' o(0,w) = P, o(l,w) =P.
We set T and W as in (3.6). For each fixed w € [0, 1], there exists X,,: [0,1] — M, (R) such that

dXuw
dt

Since T'(t,w) is smooth in ¢ and w, the map

(t) = XoW(t)T(t, w), Xw(0) = Xo.

X:[0,1] x [0,1] 3 (t,w) = Xo(t) € M, (R)
is a smooth map, because of smoothness in parameter « in Theorem 2.15. To show that X (1) =
X(1,0) does not depend on choice of paths, it is sufficient to show that
oX .

3.9 — =XW
(3.9) 50
holds on [0,1] x [0,1]. In fact, by (3.8), W(1,w) = 0 for all w € [0,1], and then (3.9) implies that
X (1,w) is constant.

We prove (3.9): By definition, it holds that

oxX y
E:XT7 X(O7’U]):XO

for each w € [0, 1]. Hence by (3.5),

(3.10)

00X X  PX 9

Ot ow ~ Otdw  dwdt @(XT)
_‘ZT+XZZ_Z§T+X<3¥+TW—WT)
:%T+X%/+%W—XWT
- 2w+ (5w

So, the function Y, (t) := 0X /0w — XW satisfies the ordinary differential equation

dY,
dt
for each w € [0,1]. Thus, by the uniqueness of the solution, Y;,(¢) = O holds on [0, 1] x [0, 1].
Hence we have (3.9).
Thus, X (1) depends only on the end point P of the path. Hence we can set X (P) := X (1) for
each P € U, and obtain a map X: U — M, (R). Finally we show that X is the desired solution.
The initial condition X (Pg) = Xj is obviously satisfied. On the other hand, if we set

(t) =Yu(t)T(t,w), Yu(0)=0

Z(0) == X(uty. . ud 6, u™),
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Z(6) satisfies the equation (3.4) for the path () := (ul,...,u’ +4,...,u™) with Z(0) = X(P).
Since (2, = (25,

0X dZ
5 )= G5 |_ = Z0)2,(P) = X(P);(P)

which completes the proof. O

Application: Poincaré’s lemma.

Theorem 3.6 (Poincaré’s lemma). If a differential 1-form
w = Zaj(ul, e ,Um) d'U/j
j=1

defined on a simply connected domain U C R™ is closed, that is, dw = 0 holds, then there exists a
C*®-function f on U such that df = w. Such a function f is unique up to additive constants.

Proof. Since

Jda;  Oa; . .
dw = I ) dut A di,
Z (8ul ou’ )
1<J
the assumption is equivalent to
OJaj  Oay

- Sh=0  (1Zi<jsm).

(3.11)

Consider a system of linear partial differential equations with unknown &, a 1 x 1-matrix valued
function (i.e. a real-valued function), as

0
E.zfaj (Gj=1,...,m), E(up, ..., upr) = 1.

(3.12) 5

Then it satisfies (3.3) because of (3.11). Hence by Theorem 3.5, there exists a smooth function
E(ut, ..., u™) satisfying (3.12). In particular, Proposition 2.8 yields ¢ = det{ never vanishes.
Hence £(ug,...,ul) = 1 > 0 means that £ > 0 holds on U. Letting f := log&, we have the
function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g satisfy df = dg = w, it holds that
d(f — g) = 0. Hence by connectivity of U, f — g must be constant. O

Application: Conjugation of Harmonic functions. In this paragraph, we identify R? with
the complex plane C. It is well-known that a smooth function

(3.13) f:U3u+iv— &(u,v) +in(u,v) € C (i=+V-1)

defined on a domain U C C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

o _on 05 _ Oy
(3.14) ou  ov’ v Ou’

Definition 3.7. A function f: U — R defined on a domain U C R? is said to be harmonic if it
satisfies

Af = fuu + f’uv =0.
The operator A is called the Laplacian.
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Proposition 3.8. If function f in (3.13) is holomorphic, {(u,v) and n(u,v) are harmonic func-
tions.

Proof. By (3.14), we have

guu = (§u>u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = —Quv-
Hence A¢ = 0. Similarly,

Nuu = (_Ev)u = _g'uu = _guv = _(gu)v = _(nv)v = —Tw-
Thus An = 0. O

Theorem 3.9. Let U C C = R? be a simply connected domain and &(u,v) a C*-function harmonic
on U® Then there exists a C*° harmonic function n on U such that &(u,v)+in(u,v) is holomorphic
on U.

Proof. Let o := —&, du + £, dv. Then by the assumption,
do = (Epp + Euu) du Adv =0

holds, that is, a is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 1.9), there exists a function n such that dn = n, du + n, dv = a. Such a function 7
satisfies (3.14) for given . Hence £ + in is holomorphic in v + iv. O

Example 3.10. A function {(u,v) = e"cosv is harmonic. Set
a:=—&du+ &, dv=e"sinvdu+ e cosv dv.
Then n(u,v) = e* sinwv satisfies dn = a.. Hence
£+in=e"(cosv +isinv) ="t
is holomorphic in u + iv.

Definition 3.11. The harmonic function 7 in Theorem 3.9 is called the conjugate harmonic func-
tion of &.

8The theorem holds under the assumption of C2-differentiability.
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Ezxercises

3-1

3-2

Let
G(u0) = s, Elu,v) == logVu? + 02

u? 4 02’

be functions defined on non-simply connected domain U := R? \ {(0,0)}.

(1) Show that both & and & are harmonic on U.
(2) Verify that there exists a conjugate harmonic function 7; of & on U.

(3) Prove that there exists no conjugate harmonic function 79 of & on U.

Consider a linear system of partial differential equationcs for 3 x 3-matrix valued unknown
X on a domain U C R? as

0 —a —hi 0 —B —h;
‘%X = X0, ‘%X = X4, R:=|a 0 -k, A=[B8 0 -n3]|],
v Y hi A 0 hy h3 0

where (u,v) are the canonical coordinate system of R?, and «, 8 and h} (i,j = 1,2) are
smooth functions defined on U. Write down the integrability conditions in terms of «, 8 and
h.

J



