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5 The Gauss and Codazzi equations

5.1 Gauss and Codazzi equations

The Gauss-Weingarten formulas (Theorem 4.2) can be considered as a system of partial differential
equations with unknown F, whose coefficient matrices are 2; and (2.

Remark 5.1. The coefficient matrices 27 and (25 in the Gauss-Weingarten formula are expressed
in terms of the coefficients of the first and second fundamental forms. In fact, explicit formula for
components of {2; in terms of (g;;) and (h;;) are found in (4.15) and (4.18).

The following proposition is a direct conclusion of Proposition 3.2 and Theorem 4.2:

Proposition 5.2. Let p: U — R? be a parametrized surface defined on a domain U of u'u?-plane,
and let (g;j) and (hi;) be the coefficients of the first and second fundamental forms. Then the
matrices {1 and (22 in (4.17) satisfy

oy 082
5.1 — = ——= — N+ 22 =0
(5-1) ou?  Oul 1% fada

In this section, we show that nine equalities (5.1) are reduced to three equalities, as follows:

Theorem 5.3 (Gauss and Codazzi equations). The integrability condition (5.1) is equivalent to
the following three equalities:

(5.2) hir,2 = ho11 = Z <F2j1h1j - Fljlh2j>
J
(5.3) hi22 — hoo 1 = Z (szzhlj - Fljzh2j>
J
1
(5.4) Kye2 = §(h11h22 - h12h21)(= K)7

where g := det(gi;) = g11922 — 912921, and

1
(5.5) Kys2 := —Ryo,

g

1 s 7 s 1
(5.6) Rjp = 5(9116,2]‘ — g1j.2k + 92j,1k — G2k,15) — Zgis(Fkgplj =I5 1s;)

+ ngkl(E£2Ffj - Fllspzsj)'

l,s

The equalities (5.2) and (5.3) are called the Codazzi equations , and (5.4) is called the Gauss
equation.
Remark 5.4. Let

hij;k = hij,k — Z (Filkhlj — F]ijhil) .
l
Then ‘ ‘
VI = hijpdu’ ® du? @ du®
i3,k

does not depend on the coordinate system, which is called the covariant derivative of the second

fundamental form. The Codazzi equations is equivalent to h;j.; = Ak, that is, symmetricity of
VII.
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Remark 5.5. The quantity Ky in (5.5) is determined only by the first fundamental form, and
one can show that it is invariant under coordinate changes. We call it the (intrinsic) Gaussian
curvature of ds®. The Gauss equation (5.4) claims that the intrinsic Gaussian curvature is identical

to the Gaussian curvature of the surface.

Proof of Theorem 5.3. We set

nonoI
112 122 Ig = 0172 - 9211 - 91(22 + 9291.
B BB

Then the integrability condition (5.1) is equivalent to I]Z: =0 (i,7 =1,2,3).
Step 1. By symmetricity of h;; and g%,

I3 = hi1 Ay + hia A3 — hat A} — hop AT = Z(huAlg — hy Al)
1

=> (hu > 9" ha —hy Zglshﬂ)
l s s

= g"huha =Y g% hahy =Y g"huho —> g hihy, =0.
l,s l,s l,s l,s

Thus the condition I3 = 0 is satisfied automatically.
Step 2. Since

I =hyjo—hojn — > (T — Iijhe) (7 =1,2),
l

the conditions Ij?’ =0 (j = 1,2) are equivalent to the Codazzi equations (5.2) and (5.3).
Step 3. For j =1,2

I = —A{,z + Agg + Z(Fszlz — I AY)
1
== (@"hu) 2+ D (¢ h2) 1 + > g (haol Yy — hasT3)
] 1 s
== ¢ (ha — hiza) — Z(gﬁhu — g/ hiz) + > g (hasT, = hisT3)
]

l l,s

== g huz —hi2a) + YD 979" (Gap2hi — gapahuz) + > 9" (hasTY) — hiT3)
1 I B L,s

= - Zgjl(hll,Q - hl?ﬂ) + Z gajgl,fg’ Z ((gasF,BSQ + gsﬁ[ésﬁ)hll - (gaspél + gsﬁplsﬁ)hm)
l Lo, 8 s
+ Zgls(fhsfljl - hlsFle)
l,s
=— Zgﬂ(hu,z —hi21) + Zglﬁféghu + Zgjafézhu - ngfélhm - Zgjaffnhzz
l 1,8 l,a L,B l,a

+ Zgls(h%ﬂjz - hlsFle)

l,s
=- Zgﬂ(hll,Q —Tuz1) — Z(Flsghls — IYhas) = — Zgﬂfzg,
l s l

()=~ ) ()
)=\ )\

that is,
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Here, we used Proposition 4.3 and the relation f;l =7 IA);c 771 ie.,
97 == 99" gapr
ap

Hence the conditions Ig =0 (j = 1,2) are equivalent to I;’ =0(j=12).
Step 4. Since
=TIy - Z(Fflpzlj — Iy TY;) + Afhjs — Abhy,
1

for i,j = 1,2, we have

Zgiﬂ; = (hirhjo — highj1) = Rji + hiihjo — hiohj,

where Rjj is the quantity given by (5.6). Since the right-most term of the definition of Rjj is
computed as

1
ngl(f’fjfiz - FQSstll) =3 Z((gkz,s + gsk,2 — G2s,k)(9tj1 + 91t,5 — G1j.t)

l,s s,t
— (9r1,t + Gik2 — 91k,t)(9sj22 + G265 — 92]‘75))’
Hence R;i is skew symmetric in j and k:

Rig = — Ry, Ri1 = Ry = 0.

Therefore I; =0 for 4,7 = 1,2 is equivalent to the Gauss equation (5.4). O

5.2 Integrability conditions for orthonormal frames

Under the formulation with orthonormal frame as in Proposition 4.8, we can compute the inte-
grability conditions. Since {2 and A are skew-symmetric matrices, the conditions consist of three
scalar equalities obviously. Such a formulation will be discussed in the lecture on the next quarter.
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Ezxercises
Let p: U — R3 be a regular surface of domain U C R?, and denote by (u',u?) = (u,v) the
coordinate system of U. And write the first and second fundamental forms as
ds® = Edu® + 2F dudv + Gdv® =Y _ gi; du’ du,
0,J
II = Ldu® + 2M dudv + N dv® = _ hy; du’ du?,
4,J
respectively.

5-1 Assume L = N = 0, that is, Il = 2M dudv = 2hi5 du' du?, Prove that, if the Gaussian
curvature K is negative constant,

E, =G, =0, that is, g11,2 = g22,1 = 0.
5-2 Assume F =0 and E = G = €27, where o is a function in (u,v). Let z = u+iv (i = v/—1)
and define a complex-valued function ¢ in z by

L(u,v) — N(u,v)
2

q(z) = —iM(u,v).

Prove that the Codazzi equations are equivalent to

00 _ a0
9z ¢ 0z

where H is the mean curvature, and

o _1/(90 .9 o _1
92 2\ou 'ov) B8z 2

9 ..9
ou ov )’



