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6 The fundamental theorem for surfaces

6.1 The statement

Let U be a domain of u1u2-plane and let

(6.1) Î =

(
g11 g12
g21 g22

)
, ÎI =

(
h11 h12

h21 h22

)
,

be two symmetric matrices whose components are real-valued C∞-functions on U . In addition,
assume

(6.2) g11 > 0, g22 > 0, and g11g22 − g12g21 > 0

hold on U . In other words, Î is a positive-definite matrix at each point on U . Define

(6.3) Γ k
ij =

1

2

2∑
l=1

gkl(gkj,i + gik,j − gij,k), Ai
j =

2∑
l=1

gilhlj

where (gij) = (gij)
−1 is the inverse matrix of (gij).

Theorem 6.1 (The fundamental theorem for surface theory). Assume U is simply connected,
and (gij) and (hij) satisfy the Gauss equation (5.4) and the Codazzi equations (5.2)–(5.3) in the
previous section. Then there exists a regular surface p : U → R3 such that

• the first fundamental form of p is ds2 =
∑

i,j gijdu
i duj,

• the second fundamental form of p with respect to the unit normal vector field ν := (p,1 ×
p,2)/|p,1 × p,2| coincides with II =

∑
i,j hijdu

i duj.

Moreover, such a surface p is unique up to a transformation

p 7→ Rp+ a, R ∈ SO(3), a ∈ R3.

6.2 Uniqueness

Here we shall prove the uniqueness part of Theorem 6.1. Let p and p̃ be regular surfaces in R3

defined on a domain U of u1u2-plane10, with unit normal vector fields

ν :=
p,1 × p,2
|p,1 × p,2|

and ν̃ :=
p̃,1 × p̃,2
|p̃,1 × p̃,2|

,

respectively. Then the Gauss frame of p and p̃ are written as

F := (p,1, p,2, ν), and F̃ := (p̃,1, p̃,2, ν̃),

respectively. Assume the coefficients (gij) and (hij)of the first and second fundamental forms are
common for p and p̃. Then F and F̃ satisfy the Gauss-Weingarten equations (4.17)

(6.4) F,j = FΩj and F̃,j = F̃Ωj , where Ωj =

Γ 1
1j Γ 1

2j −A1
j

Γ 2
1j Γ 2

2j −A2
j

h1j h2j 0

 .

Hence, for i = 1, 2,

∂

∂uj
F̃F−1 = F̃,jF−1 + F̃(F−1),j = F̃,jF−1 − F̃F−1F,jF−1 = F̃ΩjF−1 − F̃ΩjF−1 = O
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10The uniqueness does not require simple connectedness of U .
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hold on U . Since we have assumed that U is a domain, U is (arcwise) connected. This implies
that R := F̃F−1 is a constant matrix on U . Moreover, since p and p̃ share their first fundamental
forms, it holds that

FTF =

p,1 · p,1 p,1 · p,2 p,1 · ν
p,2 · p,1 p,2 · p,2 p,2 · ν
ν · p,1 ν · p,2 ν · ν

 =

g11 g12 0
g21 g22 0
0 0 1

 = F̃T F̃ = FTRTRF .

Hence RTR = id, that is, R is an orthogonal matrix. Moreover,

ν̃ =
p̃,1 × p̃,2
|p̃,1 × p̃,2|

= Rν = R
p,1 × p,2
|p,1 × p,2|

implies R(p,1 × p,2) = (Rp,1)× (Rp,2), hence detR = 1. Summing up, the Gauss frames F and F̃
are related as F̃ = RF (R ∈ SO(3)). By the first and second columns of this relation, it holds that

dp̃ = p̃,1 du
1 + p̃,2 du

2 = Rp,1du
1 +Rp,2 du

2 = R(dp).

Hence, by connectivitity of U again, a := p̃−Rp is a constant vector.

6.3 Existence

Next, we show the existence part of Theorem 6.1.

Lemma 6.2. Let (γij) be a positive definite symmetric matrix, that is, γ11 and γ22 are positive,
γ11γ22 − γ12γ21 > 0 and γ12 = γ21. Then there exists a vectors v1, v2 and v3 in R3 such that

vi · vj = γij , v3 · vj = 0, v3 · v3 = 1, and det(v1,v2,v3) > 0

hold for i, j = 1, 2.

Proof. Let θ ∈ (0, π) be an angle satisfying cos θ = g12/
√
g11g22 ∈ (−1, 1) \ {0}, and set

v1 :=
√
g11

1
0
0

 , v2 :=
√
g22

cos θ
sin θ
0

 , v3 :=

0
0
1

 .

Then v1, v2 and v3 are desired vectors.

Step 1. We fix a point P0 in U . Then by Lemma 6.2, there exists a matrix F0 such that

(6.5) FT
0 F0 =

g11(P0) g12(P0) 0
g21(P0) g22(P0) 0

0 0 1

 .

Since (gij) and (hij) satisfy the Gauss and Codazzi equations, Theorem 5.3 implies that the
equation (6.4) for unknown matrix-valued function F . So, by Theorem 3.5, there exists a unique
matrix-valued function F defined on U satisfying

(6.6) F,j = FΩj , F(P0) = F0

for a matrix F0 satisfying (6.5). Decompose the solution F into column vectors as

F(u1, u2) = (a1(u
1, u2),a2(u

1, u2),a3(u
1, u2)).
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Then it hold that

∂

∂u2
(a1) = Γ 1

12a1 + Γ 2
12a2 + h12a3,

∂

∂u1
(a2) = Γ 1

21a1 + Γ 2
21a2 + h21a3,

that is,
ω := a1 du

1 + a2 du
2

is a (vector-valued) closed one-form on the simply connected domain U . Hence by Poincaré’s
lemma (Theorem 1.9), there exists a map p : U → R3 with dp = ω, that is,

(6.7) p,1 = a1, p,2 = a2.

Step 2. We shall show that p obtained in the previous step is the desired one. Let F be a solution
of (6.6). Then the symmetric matrix-valued function FTF satisfies a system of linear partial
differential equations

∂FTF
∂uj

= ΩT
j FTF + FTFΩj , FTF(P0) = FT

0 F0

where F0 is a matrix as in (6.5).
On the other hand, consider the matrix-valued function

G :=

g11 g12 0
g21 g22 0
0 0 1

 .

Then, by (6.3), it holds that

(6.8) G,j = ΩT
j G + GΩj G(P0) = FT

0 F0.

Hence FTF and G satisfy the same system of partial differential equations with the same initial
conditions. Thus, the uniqueness of the solution infers FTF = G, that is,a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3

 =

g11 g12 0
g21 g22 0
0 0 1

 .

So, together with (6.7) and that detF > 0

gij = p,i · p,j , ν = a3.

Then
hij = (ai),j · ν = p,ij · ν,

that is, the coefficients of the second fundamental form coincides with (hij).
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Exercises

6-1 Let θ : U → R be a C∞-function defined on a simply connected domain U of the uv-plane
R2. Assuming θ satisfies θuv = sin θ, prove that there exists a surface p : U → R3 whose first
and second fundamental forms are

ds2 = du2 + 2 cos θ du dv + dv2, II = 2 sin θ du dv.

6-2 Let σ : U → R be a C∞-function defined on a simply connected domain U of the uv-plane
R2. Assuming σ satisfies ∆σ = − 1

2 sinhσ, prove that there exists a surface p : U → R3 with

ds2 = e2σ(du2 + dv2), II =
1

2

(
(e2σ + 1)du2 + (e2σ − 1)dv2

)
.


