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6 The fundamental theorem for surfaces
6.1 The statement
Let U be a domain of u'u?-plane and let
T 911 912 7j hi1 hia
6.1 I= , I = ,
(6.1 <921 922) <h21 hzz)
be two symmetric matrices whose components are real-valued C*°-functions on U. In addition,
assume

=

(6.2) g11 > 0, g22 >0, and 911922 — g12921 > 0

hold on U. In other words, Tisa positive-definite matrix at each point on U. Define
1< 2
(6.3) I = B} > Mg+ ging — 9igk)s AT=D 9"y
=1 =1

where (g7) = (gi;) ™" is the inverse matrix of (g;;).

Theorem 6.1 (The fundamental theorem for surface theory). Assume U is simply connected,
and (gi;) and (h;j) satisfy the Gauss equation (5.4) and the Codazzi equations (5.2)—~(5.3) in the
previous section. Then there exists a reqular surface p: U — R3 such that

o the first fundamental form of p is ds®> = Z” gijdu® du?,

o the second fundamental form of p with respect to the unit normal vector field v := (p1 X
p2)/Ip1 X p2| coincides with I =3, ; hijdu’ du? .

Moreover, such a surface p is unique up to a transformation

p— Rp+ a, R € S0O(3), a € R3.

6.2 Uniqueness

Here we shall prove the uniqueness part of Theorem 6.1. Let p and P be regular surfaces in R?
defined on a domain U of u'u?-plane!®, with unit normal vector fields

. D1 X P2
and /R ALEAE SL

P1XDp2
Vi= —
P11 XDP2

- |P,1 X P,2|

respectively. Then the Gauss frame of p and p are written as
F = (p,1,p,2,V), and j_::: (ﬁ,17ﬁ,27ﬂ)7

respectively. Assume the coefficients (g;;) and (h;;)of the first and second fundamental forms are
common for p and p. Then F and F satisfy the Gauss-Weingarten equations (4.17)
B _ ry;, Iy, -—Ai
(6.4) F;=F; and F;=F, where ;= | I, I3 —A7
h1j hgj 0

Hence, for i =1, 2,
o ~ ~ ~ ~ ~ ~ ~
%}"}”1 =F; F '+ FF N =F; F - FF I F F T = F F T - F F =0
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10The uniqueness does not require simple connectedness of U.
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hold on U. Since we have assumed that U is a domain, U is (arcwise) connected. This implies
that R := FF~! is a constant matrix on U. Moreover, since p and p share their first fundamental
forms, it holds that

P1°P1 P1°P2 D1V g1 g1z O o
F'F=|p2-p1 p2-p2 pP2-v|=|921 g2 0|=FF=F R'RF.
v-p1 V-pa2 V-V 0 0 1

Hence RTR = id, that is, R is an orthogonal matrix. Moreover,

D1 XD X
P11 XP2 :Ru—Rp’l P2

v — — —
[P1 % Dol Ip1 X pal

implies R(p,1 X p2) = (Rp,1) X (Rp,2), hence det R = 1. Summing up, the Gauss frames F and F
are related as F = RF (R € SO(3)). By the first and second columns of this relation, it holds that

dp =P du' +p2du® = Rpdu’ + Rpodu® = R(dp).

Hence, by connectivitity of U again, a := p — Rp is a constant vector. O

6.3 FExistence

Next, we show the existence part of Theorem 6.1.

Lemma 6.2. Let (y;;) be a positive definite symmetric matriz, that is, y11 and 22 are positive,
Y11Y22 — V12721 > 0 and 12 = v21. Then there exists a vectors vi, vy and vy in R? such that

v; U = Vij, v3 - v; =0, v3-v3 = 1, and det(v1,v2,v3) >0
hold fori, j =1,2.

Proof. Let 0 € (0,7) be an angle satisfying cos8 = g12/1/g11922 € (—1,1) \ {0}, and set

1 cos 0
v1:=+/g11 | 0], vy 1= +/g22 | sinf |, v3:= |0
0 0 1
Then v1, vo and v3 are desired vectors. O

Step 1. We fix a point Py in U. Then by Lemma 6.2, there exists a matrix Fy such that

911(Po) g12(Po) 0
(6.5) FiFo={921(Po) g22(Po) 0
0 0 1

Since (gi;) and (h;;) satisfy the Gauss and Codazzi equations, Theorem 5.3 implies that the
equation (6.4) for unknown matrix-valued function F. So, by Theorem 3.5, there exists a unique
matrix-valued function F defined on U satisfying

(6.6) F;=F, F(Po) = Fo
for a matrix Fy satisfying (6.5). Decompose the solution F into column vectors as

Flur,u?) = (a1 (ut, u?), az(ut, u?), asz(ut, u?)).
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Then it hold that

0
w(al) = I''ya; + I'%as + hizas,

0
%(@) =I'y,a; + 3 as + hoas,

that is,
w:= a; du' + as du?
is a (vector-valued) closed one-form on the simply connected domain U. Hence by Poincaré’s
lemma (Theorem 1.9), there exists a map p: U — R3 with dp = w, that is,
(6.7) pi=ai, p2=as.

Step 2. We shall show that p obtained in the previous step is the desired one. Let F be a solution
of (6.6). Then the symmetric matrix-valued function F?F satisfies a system of linear partial
differential equations

OFTF
ouJ

=TFr'F+ FT R, FTFPo) = FlFo

where Fy is a matrix as in (6.5).
On the other hand, consider the matrix-valued function

g1 g12 0
Gi=1g21 g2 O
0 0 1
Then, by (6.3), it holds that
(6.8) G, =02]G+G02;,  G(Py) =F{ Fo.

Hence FT'F and G satisfy the same system of partial differential equations with the same initial
conditions. Thus, the uniqueness of the solution infers F7 F = G, that is,

ar-a; ai;-az ap-ag g1 gi2 O
azx-a; az-az az-az| =|ga1 go2 O
as-a; asz-a as-as 0 0 1

So, together with (6.7) and that det F > 0

9ij = P,i "D, vV =as.

Then
hij = (ai)j-v=pij- v,

that is, the coefficients of the second fundamental form coincides with (h;;). O
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Ezxercises

6-1 Let 0: U — R be a C"*°-function defined on a simply connected domain U of the uv-plane
R2. Assuming 6 satisfies 6, = sin @, prove that there exists a surface p: U — R3 whose first
and second fundamental forms are

ds?® = du® + 2 cos 0 du dv + dv?, II = 2sin 6 du dv.

6-2 Let 0: U — R be a C*°-function defined on a simply connected domain U of the uv-plane
R2. Assuming o satisfies Aoc = —% sinh o, prove that there exists a surface p: U — R? with

ds* = e® (du® + dv?), I = = ((€*7 + 1)du® + (e** — 1)dv?).
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