
Introduction

This is a first half of two series of lectures, Advanced Topics in Geometry A1 and B1, in which the
fundamental theorem for surface theory and its applications are treated.

Throughout this lecture, object of our interest is “surfaces in Euclidean 3-space”. The goal is
to give an comprehensive proof of the fundamental theorem for surface theory ([UY17, Theorem
17.2, see also Appendi B.10]). To accomplish the proof, mathematical tools including the theory
of ordinary differential equations and the Frobenius intebrability theorem are expalined.

An aim of the lectures for students is to observe mathematical view around undergraduate
calculus and linear algebra.
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1 Overview

Euclidean space

In this lecture, we denote by Rn the n-dimensional Euclidean space with canonical inner product
〈 , 〉:

(1.1) 〈x,y〉 = xTy = x1y1 + · · ·+ xnyn for x =

x1

...
xn

 , y =

y1
...
yn

 ∈ Rn,

here, we regard an element of Rn as a column vector, and (∗)T denotes the matrix transposition.
Set1

(1.2) ‖x‖ :=
√
〈x,x〉, d(x,y) := ‖y − x‖ (x,y ∈ Rn)

which is called the norm of x, and the distance of x and y, respectively.
A map f : Rn → Rn is called isometry if

(1.3) d
(
f(x), f(y)

)
= d(x,y)

holds for any x and y ∈ Rn.

Definition 1.1. An n × n real matrix R is said to be an orthogonal matrix if RTR = id holds,
where id is the n× n identity matrix.

The determinant of an orthogonal matrix R is 1 or −1. We denote by O(n) the set of n × n
orthogonal matrices, and

(1.4) SO(n) := {R ∈ O(n) ; detR = 1}.

Fact 1.2. A map f : Rn → Rn is isometry if and only if it is written in the form

(1.5) f(x) = Rx+ a
(
R ∈ O(n),a ∈ Rn

)
.

If R in (1.5) is a member of SO(n), f is said to be orientation preserving.

The Fundamental Theorem for surface Theory

Our object in this lecture is surfaces in Euclidean 3-space. The simplest question is:

Question 1.3. What quantity determines a shape of surface?

It is necessary for mathematical formulation of this question to express the surface. Among
several ways to explain surfaces, we regard a surface as a parametrization, that is, a map 2

f : U 3 (u, v) 7→ f(u, v) ∈ R3,

where U is a domain 3of R2.

11. April, 2025. Revised: 25. April, 2025 (Ver. 2)
1“A := B” means that “A is defined by B”.
2Unless confusion, points in the source domain are represented by row vectors.
3A domain is a connected open subset U ⊂ Rn.



MTH.B405; Sect. 1 2

Example 1.4. • Set U := (−π, π)× (−π
2 ,

π
2 ) and

f : U 3 (u, v) 7→ f(u, v) =

cosu cos v
sinu cos v

sin v

 ∈ R3

is a parametrization of the unit sphere in R3. The parameter u (resp. v) represents the
longitude (resp. the latitude) of the point of the sphere.

• Set V := (−π, π)× R and

g : V 3 (s, t) 7→ g(s, t) =

cos s sech t
sin s sech t
tanh t

 ∈ R3.

Then g parametrizes the unit sphere, and the st-plane is regarded as the Mercator’s world
map.

Then the following “fundamental theorem” is one of the answer:

Theorem (The Fundamental Theorem for surface theory). Let

• U ⊂ R2 be a simply connected domain,

• I be a positive definite symmetric quadratic form on U

• II be a symmetric quadratic form on U .

Assume I and II satisfy the Gauss and Codazzi equations. Then there exists a surface f : U → R3

whose first and second fundamental forms are I and II, respectively.
Moreover, such an f is unique up to orientation preserving isometry of R3.

The undefined words in the statement, and mathematical meanings of the theorem will be
explained through the lecture, and our goal is to prove this theorem.

Commutativity of partial derivatives

One of the most important fact in undergraduate calculus is the following “commutativity of partial
derivatives”.

Theorem 1.5. Let f : U → R be a function defined on a domain U of R2 and fix a point
p = (u, v) ∈ U . If the second derivative ∂2f/(∂x∂y) = fyx and ∂2f/(∂y∂x) = fxy are both defined
on U and continuous at p, then

∂2f

∂x∂y
(p) =

∂2f

∂y∂x
(p)

holds.

Proof. Take (h, k) ∈ R2 satisfying (u+ th, v + sk) ∈ U for all t, s ∈ [0, 1]. Let

g(h, k) := f(u+ h, v + k)− f(u, v + k)− f(u+ h, v) + f(u, v).

Since the partial derivative fx exists on U , the function of one variable F1(t) := g(th, k) is differ-
entiable on 0 5 t 5 1. Then the mean value theorem implies that there exists θ1 = θ1(h, k) with
0 < θ1 < 1 such that

g(h, k) = F1(1) = F1(1)− F1(0) = F ′
1(θ1) =

(
fx(u+ θ1h, v + k)− fx(u+ θ1h, v)

)
h = F2(1)h,
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where F2(s) := fx(u + θ1h, v + sk) − fx(u + θ1h, v) (0 5 s 5 1). Since (fx)y exists on U , F2 is
differentiable on 0 5 s 5 1. So, applying mean value theorem again, there exists θ2 = θ2(h, k) ∈
(0, 1) such that

F2(1) = F ′
2(θ2) = fxy(u+ θ1h, v + θ2k)k.

Summing up, there exists θ1, θ2 ∈ (0, 1) depending on h and k such that

(1.6) g(h, k) = fxy(u+ θ1h, v + θ2k)hk.

On the other hand, changing roles of h and k, we know that there exist ϕ1, ϕ2 ∈ (0, 1) such that

(1.7) g(h, k) = fyx(u+ ϕ1h, v + ϕ2k)hk.

Then
fxy(u+ θ1h, v + θ2k) = fyx(u+ ϕ1h, v + ϕ2k)

whenever hk 6= 0. Here, taking limit (h, k) → (0, 0), we have

(u+ θ1h, v + θ2k) → (u, v), (u+ ϕ1h, v + ϕ2k) → (u, v)

because θj , ϕj ∈ (0, 1) for j = 1, 2. Thus, by continuity of fxy and fyx, we have fxy(u, v) =
fyx(u, v).

Definition 1.6. A function f defined on a domain U ⊂ R2 is said to be

(1) of class C0 if it is continuous on U ,

(2) of class C1 if there exists a partial derivative fx and fy on U , and both of them are continuous,

(3) of class Cr (r = 2, 3, . . . ) if it is of class Cr−1 and all of the (r− 1)-st partial differentials are
of class C1, and

(4) of class C∞ if it is of class Cr for arbitrary non-negative integer r.

Using these terms, we have

Corollary 1.7. If a function f : U → R defined on a domain U of R2 is of class C2, then fxy = fyx
holds on U .

In this lecture, functions are assumed to be of class C∞. So partial differentials are always
commutative.

Inverse of the commutativity—Poincaré lemma

A differential 1-form, or a 1-form defined on a domain U ⊂ R2 is the form

α = a(x, y) dx+ b(x, y) dy

where a and b are C∞-functions defined on U . The total differential, or simply the differential, of
C∞-function f defined as

df := fx dx+ fy dy

is a typical example of differential forms.
A differential 2-form is a form

ω = c(x, y) dx ∧ dy

where c is a C∞-function. The exterior differential dα

dα = d(a dx+ b dy) = (bx − ay) dx ∧ dy

of 1-form α = a dx+ b dy is a typical example.
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Lemma 1.8. Let f be a C∞-function defined on a domain U ⊂ R2. Then d(df) = 0 holds.

Proof. d(df) = d(fx dx+ fy dy) = (fyx − fxy) dx ∧ dy = 0.

Theorem 1.9 (Poincaré lemma). Let U be a simply connected domain, and α a differential 1-
form defined on U . If dα = 0, then there exists a C∞ function f defined on U such that df = α.

The definition, fundamental properties of simple connectedness will be given in Section 3.

Exercises

1-1 Let f(x, y) = eax cos y, where a is a constant. Find a function g(x, y) satisfying

gx = −fy, gy = fx, g(0, 0) = 0.

1-2 Let U = R2 \ {(t, 0) ; t 5 0} and consider a 1-form

α = a(x, y) dx+ b(x, y) dy :=
−y

x2 + y2
dx+

x

x2 + y2
dy.

on U . Take a point P = (r cos θ, r sin θ) ∈ U (r > 1, 0 < θ < π), and two curves

c1(t) :=
(
x1(t), y1(t)

)
= (cos t, sin t) (0 5 t 5 θ),

c2(s) :=
(
x2(s), y2(s)

)
= (s cos θ, s sin θ) (1 5 s 5 r),

whose union gives a curve joining (1, 0) and P. Compute the line integral∫
c1∪c2

α :=

∫ θ

0

(
a(x1(t), y1(t))

dx1

dt
dt+ b(x1(t), y1(t))

dy1
dt

dt

)
+

∫ r

1

(
a(x2(s), y2(s))

dx2

ds
ds+ b(x2(s), y2(s))

dy2
ds

ds

)
.
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2 Ordinary Differential Equations

The fundamental theorem for ordinary differential equations.

Consider a function

(2.1) f : I × U 3 (t,x) 7−→ f(t,x) ∈ Rm

of class C1, where I ⊂ R is an interval and U ⊂ Rm is a domain in the Euclidean space Rm. For
any fixed t0 ∈ I and x0 ∈ U , the condition

(2.2) d

dt
x(t) = f

(
t,x(t)

)
, x(t0) = x0

of an Rm-valued function t 7→ x(t) is called the initial value problem of ordinary differential
equation, ODE for short, for unknown function x(t). For a subinterval J of I with t0 ∈ I, a
function x : J → U satisfying (2.2) is called a solution of the initial value problem.

Fact 2.1 (The existence theorem for ODE’s). Let f : I × U → Rm be a C1-function as in (2.1).
Then, for any x0 ∈ U and t0 ∈ I, there exists a positive number ε and a C1-function x : I ∩ (t0 −
ε, t0 + ε) → U satisfying (2.2).

Take two solutions xj : Jj → U (j = 1, 2) of (2.2) defined on subintervals Jj ⊂ I containing t0.
Then the function x2 is said to be an extension of x1 if J1 ⊂ J2 and x2(t) = x1(t) for all t ∈ J1.
A solution x of (2.2) is said to be maximal if there are no non-trivial extension of it.

Fact 2.2 (The uniqueness for ODE’s). The maximal solution of (2.2) is unique.

Fact 2.3 (Smoothness of the solutions). If f : I × U → Rm is of class Cr (r = 1, . . . ,∞), the
solution of (2.2) is of class Cr+1. Here, ∞+ 1 = ∞, as a convention.

Let V ⊂ Rk be another domain of Rk and consider a C∞-function

(2.3) h : I × U × V 3 (t,x;α) 7→ h(t,x;α) ∈ Rm.

For fixed t0 ∈ I, we denote by x(t;x0,α) the (unique, maximal) solution of (2.2) for f(t,x) =
h(t,x;α). Then

Fact 2.4. The map (t,x0;α) 7→ x(t;x0,α) is of class C∞.

Example 2.5. (1) Let m = 1, I = R, U = R and f(t, x) = λx, where λ is a constant. Then
x(t) = x0 exp(λt) defined on R is the maximal solution to

d

dt
x(t) = f(t, x(t)) = λx(t), x(0) = x0.

(2) Let m = 2, I = R, U = R2 and f(t; (x, y)) = (y,−ω2x), where ω is a constant. Then(
x(t)
y(t)

)
=

(
x0 cosωt+

y0

ω sinωt
−x0ω sinωt+ y0 cosωt

)
is the unique solution of

d

dt

(
x(t)
y(t)

)
=

(
y(t)

−ω2x(t)

)
,

(
x(0)
y(0)

)
=

(
x0

y0

)
,

defined on R. This equation can be considered as a single equation

d2

dt2
x(t) = −ω2x(t), x(0) = x0,

dx

dt
(0) = y0

of order 2.
25. April, 2025. Revised: 09. May, 2025)



MTH.B405; Sect. 2 6

(3) Let m = 1, I = R, U = R and f(t, x) = t(1 + x2). Then x(t) = tan t2

2 defined on (−
√
π,

√
π)

is the unique maximal solution of the initial value problem

dx

dt
= t(1 + x2), x(0) = 0.

Linear Ordinary Differential Equations.

The ordinary differential equation (2.2) is said to be linear if the function (2.1) is a linear function
in x, that is, a linear differential equation is in a form

d

dt
x(t) = A(t)x(t) + b(t),

where A(t) and b(t) are m×m-matrix-valued and Rm-valued functions in t, respectively.
For the sake of later use, we consider, in this lecture, the special form of linear differential

equation for matrix-valued unknown functions as follows: Let Mn(R) be the set of n× n-matrices
with real components, and take functions

Ω : I −→ Mn(R), and B : I −→ Mn(R),

where I ⊂ R is an interval. Identifying Mn(R) with Rn2 , we assume Ω and B are continuous
functions (with respect to the topology of Rn2

= Mn(R)). Then we can consider the linear
ordinary differential equation for matrix-valued unknown X(t) as

(2.4) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0,

where X0 is given constant matrix.
Then, the fundamental theorem of linear ordinary equation states that the maximal solution

of (2.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms.

Denote by Mn(R) the set of n × n-matrices with real components, which can be identified the
vector space Rn2 . In particular, the Euclidean norm of Rn2 induces a norm

(2.5) |X|E =
√
tr(XTX) =

√√√√ n∑
i,j=1

x2
ij

on Mn(R). On the other hand, we let

(2.6) |X|M := sup

{
|Xv|
|v|

; v ∈ Rn \ {0}
}
,

where | · | denotes the Euclidean norm of Rn.

Lemma 2.6. (1) The map X 7→ |X|M is a norm of Mn(R).

(2) For X, Y ∈ Mn(R), it holds that |XY |M 5 |X|M |Y |M.

(3) Let λ = λ(X) be the maximum eigenvalue of semi-positive definite symmetric matrix XTX.
Then |X|M =

√
λ holds.

(4) (1/
√
n)|X|E 5 |X|M 5 |X|E.
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(5) The map | · |M : Mn(R) → R is continuous with respect to the Euclidean norm.

Proof. Since |Xv|/|v| is invariant under scalar multiplications to v, we have |X|M = sup{|Xv| ; v ∈
Sn−1}, where Sn−1 is the unit sphere in Rn. Since Sn−1 3 x 7→ |Ax| ∈ R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (2.6) is well-
defined. It is easy to verify that | · |M satisfies the axiom of the norm4.

Since A := XTX is positive semi-definite, its eigenvalues λj (j = 1, . . . , n) are non-negative
real numbers. In particular, there exists an orthonormal basis [aj ] of Rn satisfying Aaj = λjaj

(j = 1, . . . , n). Let λ be the maximum eigenvalue of A, and write v = v1a1 + · · ·+ vnan. Then it
holds that

〈Xv, Xv〉 = λ1v
2
1 + · · ·+ λnv

2
n 5 λ 〈v,v〉 ,

where 〈 , 〉 is the Euclidean inner product of Rn. The equality of this inequality holds if and only if v
is the λ-eigenvector, proving (3). Noticing that the norm (2.5) is invariant under conjugations X 7→
PTXP (P ∈ O(n)), we obtain |X|E =

√
λ1 + · · ·+ λn by diagonalizing XTX by an orthogonal

matrix P . Then we obtain (4). Hence two norms | · |E and | · |M induce the same topology as
Mn(R). In particular, we have (5).

Preliminaries: Matrix-valued Functions.

Lemma 2.7. Let X and Y be C∞-maps defined on a domain U ⊂ Rm into Mn(R). Then

(1) ∂

∂uj
(XY ) =

∂X

∂uj
Y +X

∂Y

∂uj
,

(2) ∂

∂uj
detX = tr

(
X̃

∂X

∂uj

)
, and

(3) ∂

∂uj
X−1 = −X−1 ∂X

∂uj
X−1,

where X̃ is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibniz rule,
Denoting ′ = ∂/∂uj ,

O = (id)′ = (X−1X)′ = (X−1)X ′ + (X−1)′X

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1, . . . ,xn). Since the determinant is

multi-linear form for n-tuple of column vectors, it holds that

(detX)′ = det(x′
1,x2, . . . ,xn) + det(x1,x

′
2, . . . ,xn) + · · ·+ det(x1,x2, . . . ,x

′
n).

Then by cofactor expansion of the right-hand side, we obtain (2).

Proposition 2.8. Assume two C∞ matrix-valued functions X(t) and Ω(t) satisfy

(2.7) dX(t)

dt
= X(t)Ω(t), X(t0) = X0.

Then

(2.8) detX(t) = (detX0) exp

∫ t

t0

trΩ(τ) dτ

holds. In particular, if X0 ∈ GL(n,R),5 then X(t) ∈ GL(n,R) for all t.
4|X|M > 0 whenever X 6= O, |αX|M = |α| |X|M, and the triangle inequality |X + Y |M 5 |X|M + |Y |M.
5GL(n,R) = {A ∈ Mn(R) ; detA 6= 0}: the general linear group.
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Proof. By (2) of Lemma 2.7, we have

d

dt
detX(t) = tr

(
X̃(t)

dX(t)

dt

)
= tr

(
X̃(t)X(t)Ω(t)

)
= tr

(
detX(t)Ω(t)

)
= detX(t) trΩ(t).

Here, we used the relation X̃X = XX̃ = (detX) id. Hence d
dt

(
ρ(t)−1 detX(t)

)
= 0, where ρ(t) is

the right-hand side of (2.8).

Corollary 2.9. If Ω(t) in (2.7) satisfies trΩ(t) = 0, then detX(t) is constant. In particular, if
X0 ∈ SL(n,R), X is a function valued in SL(n,R) 6.

Proposition 2.10. Assume Ω(t) in (2.7) is skew-symmetric for all t, that is, ΩT +Ω is identically
O. If X0 ∈ O(n) (resp. X0 ∈ SO(n))7, then X(t) ∈ O(n) (resp. X(t) ∈ SO(n)) for all t.

Proof. By (1) in Lemma 2.7,

d

dt
(XXT ) =

dX

dt
XT +X

(
dX

dt

)T

= XΩXT +XΩTXT = X(Ω +ΩT )XT = O.

Hence XXT is constant, that is, if X0 ∈ O(n),

X(t)X(t)T = X(t0)X(t0)
T = X0X

T
0 = id .

If X0 ∈ O(n), this proves the first case of the proposition. Since detA = ±1 when A ∈ O(n), the
second case follows by continuity of detX(t).

Preliminaries: Norms of Matrix-Valued functions.

Let I = [a, b] be a closed interval, and denote by C0(I,Mn(R)) the set of continuous functions
X : I → Mn(R). For any positive number k, we define

(2.9) ||X||I,k := sup
{
e−kt|X(t)|M ; t ∈ I

}
for X ∈ C0(I,Mn(R)). When k = 0, || · ||I,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 2.11. The norm || · ||I,k on C0(I,Mn(R)) is complete.

Linear Ordinary Differential Equations.

We prove the fundamental theorem for linear ordinary differential equations.

Proposition 2.12. Let Ω(t) be a C∞-function valued in Mn(R) defined on an interval I. Then
for each t0 ∈ I, there exists the unique matrix-valued C∞-function X(t) = Xt0,id(t) such that

(2.10) dX(t)

dt
= X(t)Ω(t), X(t0) = id .

6SL(n,R) = {A ∈ Mn(R) ; detA = 1}; the special linear group.
7O(n) = {A ∈ Mn(R) ; ATA = AAT = id}: the orthogonal group; SO(n) = {A ∈ O(n) ; detA = 1}: the special

orthogonal group.
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Proof. Uniqueness: Assume X(t) and Y (t) satisfy (2.10). Then

Y (t)−X(t) =

∫ t

t0

(
Y ′(τ)−X ′(τ)

)
dτ =

∫ t

t0

(
Y (τ)−X(τ)

)
Ω(τ) dτ

(
′ =

d

dt

)
holds. Take an arbitrary closed interval J ⊂ I. Then for an arbitrary t ∈ J ,

|Y (t)−X(t)|M 5

∣∣∣∣∫ t

t0

∣∣(Y (τ)−X(τ)
)
Ω(τ)

∣∣
M
dτ

∣∣∣∣ 5 ∣∣∣∣∫ t

t0

|Y (τ)−X(τ)|M |Ω(τ)|M dτ

∣∣∣∣
=

∣∣∣∣∫ t

t0

e−kτ |Y (τ)−X(τ)|M ekτ |Ω(τ)|M dτ

∣∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
∣∣∣∣∫ t

t0

ekτ dτ

∣∣∣∣
= ||Y −X||J,k

supJ |Ω|M
|k|

ekt
∣∣∣1− e−k(t−t0)

∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
ekt

|k|
holds, and hence

e−kt|Y (t)−X(t)|M 5
supJ |Ω|M

|k|
||Y −X||J,k.

Thus, for an appropriate choice of k ∈ R, it holds that

||Y −X||J,k 5
1

2
||Y −X||J,k,

that is, ||Y −X||J,k = 0, proving Y (t) = X(t) for t ∈ J . Since J is arbitrary, Y = X holds on I.
Existence: Take a > t0 such that J := [t0, a] ⊂ I, and define a sequence {Xj} of matrix-valued
functions defined on I satisfying X0(t) = id and

(2.11) Xj+1(t) = id+

∫ t

t0

Xj(τ)Ω(τ) dτ (j = 0, 1, 2, . . . ).

Then

|Xj+1(t)−Xj(t)|M 5
∫ t

t0

|Xj(τ)−Xj−1(τ)|M|Ω(τ)|M dτ

5
ekt)

|k|
sup
J

|Ω|M||Xj −Xj−1||J,k,

and hence ||Xj+1 −Xj ||J,k 5 1
2 ||Xj −Xj−1||J,k, for an appropriate choice of k ∈ R, that is, {Xj}

is a Cauchy sequence with respect to || · ||J,k. Thus, by completeness (Lemma 2.11), it converges
to some X ∈ C0(J,Mn(R)). By (2.11), the limit X satisfies

X(t0) = id, X(t) = id+

∫ t

t0

X(τ)Ω(τ) dτ.

Applying the fundamental theorem of calculus, we can see that X satisfies X ′(t) = X(t)Ω(t)
(′ = d/dt). By the same argument for a < t0 with J = [a, t0], existence of the solution on I is
proven.

Finally, we shall prove that X is of class C∞. Since X ′(t) = X(t)Ω(t), the derivative X ′ of
X is continuous. Hence X is of class C1, and so is X(t)Ω(t). Thus we have that X ′(t) is of class
C1, and then X is of class C2. Iterating this argument, we can prove that X(t) is of class Cr for
arbitrary r.

Corollary 2.13. Let Ω(t) be a matrix-valued C∞-function defined on an interval I. Then for
each t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function Xt0,X0(t) defined
on I such that

(2.12) dX(t)

dt
= X(t)Ω(t), X(t0) = X0

(
X(t) := Xt0,X0

(t)
)

In particular, Xt0,X0
(t) is of class C∞ in X0 and t.
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Proof. We rewrite X(t) in Proposition 2.12 as Y (t) = Xt0,id(t). Then the function

(2.13) X(t) := X0Y (t) = X0Xt0,id(t),

is desired one. Conversely, assume X(t) satisfies the conclusion. Noticing Y (t) is a regular matrix
for all t because of Proposition 2.8,

W (t) := X(t)Y (t)−1

satisfies

dW

dt
=

dX

dt
Y −1 −XY −1 dY

dt
Y −1 = XΩY −1 −XY −1Y ΩY −1 = O,

that is, W is constant, and hence

W (t) = W (t0) = X(t0)Y (t0)
−1 = X0.

So the uniqueness is obtained. The final part is obvious by the expression (2.13).

Proposition 2.14. Let Ω(t) and B(t) be matrix-valued C∞-functions defined on I. Then for each
t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function defined on I satisfying

(2.14) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0.

Proof. Rewrite X in Proposition 2.12 as Y := Xt0,id. Then

(2.15) X(t) :=

(
X0 +

∫ t

t0

B(τ)Y −1(τ) dτ

)
Y (t)

satisfies (2.14). Conversely, if X satisfies (2.14), W := XY −1 satisfies

X ′ = W ′Y +WY ′ = W ′Y +WYΩ, XΩ +B = WYΩ +B,

and then we have W ′ = BY −1. Since W (t0) = X0,

W = X0 +

∫ t

t0

B(τ)Y −1(τ) dτ.

Thus we obtain (2.15).

Theorem 2.15. Let I and U be an interval and a domain in Rm, respectively, and let Ω(t,α) and
B(t,α) be matrix-valued C∞-functions defined on I×U (α = (α1, . . . , αm)). Then for each t0 ∈ I,
α ∈ U and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function X(t) = Xt0,X0,α(t)
defined on I such that

(2.16) dX(t)

dt
= X(t)Ω(t,α) +B(t,α), X(t0) = X0.

Moreover,
I × I ×Mn(R)× U 3 (t, t0, X0,α) 7→ Xt0,X0,α(t) ∈ Mn(R)

is a C∞-map.
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Proof. Let Ω̃(t, α̃) := Ω(t + t0,α) and B̃(t, α̃) = B(t + t0,α), and let X̃(t) := X(t + t0). Then
(2.16) is equivalent to

(2.17) dX̃(t)

dt
= X̃(t)Ω̃(t, α̃) + B̃(t, α̃), X̃(0) = X0,

where α̃ := (t0, α1, . . . , αm). There exists the unique solution X̃(t) = X̃0,X0,α̃(t) of (2.17) for
each α̃ because of Proposition 2.14. So it is sufficient to show differentiability with respect to the
parameter α̃. We set Z = Z(t) the unique solution of

(2.18) dZ

dt
= ZΩ̃ + X̃

∂Ω̃

∂αj
+

∂B̃

∂αj
, Z(0) = O.

Then it holds that Z = ∂X̃/∂αj . In particular, by the proof of Proposition 2.14, it holds that

Z=
∂X̃

∂αj
=

(∫ t

0

(
X̃(τ)

∂Ω̃(τ, α̃)

∂αj
+

∂B̃(τ, α̃)

∂αj

)
Y −1(τ)dτ

)
Y (t).

Here, Y (t) is the unique matrix-valued C∞-function satisfying Y ′(t) = Y (t)Ω̃(t, α̃), and Y (0) = id.
Hence X̃ is a C∞-function in (t, α̃).

An Application: Fundamental Theorem for Space Curves.

A C∞-map γ : I → R3 defined on an interval I ⊂ R into R3 is said to be a regular curve if
γ̇ 6= 0 holds on I. For a regular curve γ(t), there exists a parameter change t = t(s) such that
γ̃(s) := γ(t(s)) satisfies |γ̃′(s)| = 1. Such a parameter s is called the arc-length parameter.

Let γ(s) be a regular curve in R3 parametrized by the arc-length satisfying γ′′(s) 6= 0 for all s.
Then

e(s) := γ′(s), n(s) :=
γ′′(s)

|γ′′(s)|
, b(s) := e(s)× n(s)

forms a positively oriented orthonormal basis {e,n, b} of R3 for each s. Regarding each vector as
column vector, we have the matrix-valued function

(2.19) F(s) := (e(s),n(s), b(s)) ∈ SO(3).

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

κ(s) := |γ′′(s)| > 0, τ(s) := −
〈
b′(s),n(s)

〉
,

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet
frame satisfies

(2.20) dF
ds

= FΩ, Ω =

0 −κ 0
κ 0 −τ
0 τ 0

 .

Proposition 2.16. The curvature and the torsion are invariant under the transformation x 7→
Ax + b of R3 (A ∈ SO(3), b ∈ R3). Conversely, two curves γ1(s), γ2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A ∈ SO(3) and b ∈ R3 such that
γ2 = Aγ1 + b.

Proof. Let κ, τ and F1 be the curvature, torsion and the Frenet frame of γ1, respectively. Then
the Frenet frame of γ2 = Aγ1+b (A ∈ SO(3), b ∈ R3) is F2 = AF1. Hence both F1 and F2 satisfy
(2.20), and then γ1 and γ2 have common curvature and torsion.
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Conversely, assume γ1 and γ2 have common curvature and torsion. Then the frenet frame F1,
F2 both satisfy (2.20). Let F be the unique solution of (2.20) with F(t0) = id. Then by the
proof of Corollary 2.13, we have Fj(t) = Fj(t0)F(t) (j = 1, 2). In particular, since Fj ∈ SO(3),
F2(t) = AF1(t) (A := F2(t0)F1(t0)

−1 ∈ SO(3)). Comparing the first column of these, γ′
2(s) =

Aγ′
1(t) holds. Integrating this, the conclusion follows.

Theorem 2.17 (The fundamental theorem for space curves).
Let κ(s) and τ(s) be C∞-functions defined on an interval I satisfying κ(s) > 0 on I. Then there
exists a space curve γ(s) parametrized by arc-length whose curvature and torsion are κ and τ ,
respectively. Moreover, such a curve is unique up to transformation x 7→ Ax + b (A ∈ SO(3),
b ∈ R3) of R3.

Proof. We have already shown the uniqueness in Proposition 2.16. We shall prove the existence:
Let Ω(s) be as in (2.20), and F(s) the solution of (2.20) with F(s0) = id. Since Ω is skew-
symmetric, F(s) ∈ SO(3) by Proposition 2.10. Denoting the column vectors of F by e, n, b, and
let

γ(s) :=

∫ s

s0

e(σ) dσ.

Then F is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively.

Exercises

2-1 Find the maximal solution of the initial value problem

dx

dt
= x(1− x), x(0) = a,

where a is a real number.

2-2 Let x = x(t) be the maximal solution of an initial value problem of differential equation

d2x

dt2
= − sinx, x(0) = 0,

dx

dt
(0) = 2.

• Show that dx

dt
= 2 cos

x

2
.

• Verify that x is defined on R, and compute limt→±∞ x(t).

2-3 Find an explicit expression of a space curve γ(s) parametrized by the arc-length s, whose
curvature κ and torsion τ satisfy

κ = τ =
1√

2(1 + s2)
.
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3 Integrability Conditions

Let U ⊂ Rm be a domain of (Rm;u1, . . . , um) and consider an m-tuple of n × n-matrix valued
C∞-maps

(3.1) Ωj : Rm ⊃ U −→ Mn(R) (j = 1, . . . ,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

(3.2) ∂X

∂uj
= XΩj (j = 1, . . . ,m), X(P0) = X0,

where P0 = (u1
0, . . . , u

m
0 ) ∈ U is a fixed point, X is an n × n-matrix valued unknown, and X0 ∈

Mn(R).

Proposition 3.1. If a C∞-map X : U → Mn(R) defined on a domain U ⊂ Rm satisfies (3.2)
with X0 ∈ GL(n,R), then X(P) ∈ GL(n,R) for all P ∈ U . In addition, if Ωj (j = 1, . . . ,m) are
skew-symmetric and X0 ∈ SO(n), then X(P) ∈ SO(n) holds for all P ∈ U .

Proof. Since U is connected, there exists a continuous path γ0 : [0, 1] → U such that γ0(0) = P0

and γ0(1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Lee13]), there exists
a smooth path γ : [0, 1] → U joining P0 and P approximating γ0. Since X̂ := X ◦ γ satisfies (3.4)
with X̂(0) = X0, Proposition 2.8 yields that det X̂(1) 6= 0 whenever detX0 6= 0. Moreover, if Ωj ’s
are skew-symmetric, so is Ωγ(t) in (3.4). Thus, by Proposition 2.10, we obtain the latter half of
the proposition.

Proposition 3.2. If a matrix-valued C∞ function X : U → GL(n,R) satisfies (3.2), it holds that

(3.3) ∂Ωj

∂uk
− ∂Ωk

∂uj
= ΩjΩk −ΩkΩj

for each (j, k) with 1 5 j < k 5 m.

Proof. Differentiating (3.2) by uk, we have

∂2X

∂uk∂uj
=

∂X

∂uk
Ωj +X

∂Ωj

∂uk
= X

(
∂Ωj

∂uk
+ΩkΩj

)
.

On the other hand, switching the roles of j and k, we get

∂2X

∂uj∂uk
= X

(
∂Ωk

∂uj
+ΩjΩk

)
.

Since X is of class C∞, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X ∈ GL(n,R), the conclusion follows.

The equality (3.3) is called the integrability condition or compatibility condition of (3.2).
The chain rule yields the following:

Lemma 3.3. Let X : U → Mn(R) be a C∞-map satisfying (3.2). Then for each smooth path
γ : I → U defined on an interval I ⊂ R, X̂ := X ◦ γ : I → Mn(R) satisfies the ordinary differential
equation

(3.4) dX̂

dt
(t) = X̂(t)Ωγ(t)

Ωγ(t) :=

m∑
j=1

Ωj ◦ γ(t)
duj

dt
(t)


on I, where γ(t) =

(
u1(t), . . . , um(t)

)
.

09. May, 2025. Revised: 16. May, 2025
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Lemma 3.4. Let Ωj : U → Mn(R) (j = 1, . . . ,m) be C∞-maps defined on a domain U ⊂ Rm

which satisfy (3.3). Then for each smooth map

σ : D 3 (t, w) 7−→ σ(t, w) = (u1(t, w), . . . , um(t, w)) ∈ U

defined on a domain D ⊂ R2, it holds that

(3.5) ∂T

∂w
− ∂W

∂t
− TW +WT = 0,

where

(3.6) T :=

m∑
j=1

Ω̃j
∂uj

∂t
, W :=

m∑
j=1

Ω̃j
∂uj

∂w
(Ω̃j := Ωj ◦ σ).

Proof. By the chain rule, we have

∂T

∂w
=

m∑
j,k=1

∂Ωj

∂uk

∂uk

∂w

∂uj

∂t
+

m∑
j=1

Ω̃j
∂2uj

∂w∂t
,

∂W

∂t
=

m∑
j,k=1

∂Ωj

∂uk

∂uk

∂t

∂uj

∂w
+

m∑
j=1

Ω̃j
∂2uj

∂t∂w

=

m∑
j,k=1

∂Ωk

∂uj

∂uj

∂t

∂uk

∂w
+

m∑
j=1

Ω̃j
∂2uj

∂t∂w
.

Hence

∂T

∂w
− ∂W

∂t
=

m∑
j,k=1

(
∂Ωj

∂uk
− ∂Ωk

∂uj

)
∂uk

∂w

∂uj

∂t

=

m∑
j,k=1

(
Ω̃jΩ̃k − Ω̃kΩ̃j

) ∂uk

∂w

∂uj

∂t

=

 m∑
j=1

Ω̃j
∂uj

∂t

( m∑
k=1

Ω̃k
∂uk

∂w

)
−
(

m∑
k=1

Ω̃k
∂uk

∂w

) m∑
j=1

Ω̃j
∂uj

∂t


= TW −WT.

Thus (3.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 3.5. Let Ωj : U → Mn(R) (j = 1, . . . ,m) be C∞-functions defined on a simply connected
domain U ⊂ Rm satisfying (3.3). Then for each P0 ∈ U and X0 ∈ Mn(R), there exists the unique
n× n-matrix valued function X : U → Mn(R) satisfying (3.2). Moreover,

• if X0 ∈ GL(n,R), X(P) ∈ GL(n,R) holds on U ,

• if X0 ∈ SO(n) and Ωj (j = 1, . . . ,m) are skew-symmetric matrices, X ∈ SO(n) holds on U .

Proof. The latter half is a direct conclusion of Proposition 3.1. We show the existence of X: Take
a smooth path γ : [0, 1] → U joining P0 and P. Then by Theorem 2.15, there exists a unique
C∞-map X̂ : [0, 1] → Mn(R) satisfying (3.4) with initial condition X̂(0) = X0.

We shall show that the value X̂(1) does not depend on choice of paths joining P0 and P. To
show this, choose another smooth path γ̃ joining P0 and P. Since U is simply connected, there
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exists a homotopy between γ and γ̃, that is, there exists a continuous map σ0 : [0, 1] × [0, 1] 3
(t, w) 7→ σ0(t, w) ∈ U satisfying

(3.7)
σ0(t, 0) = γ(t), σ0(t, 1) = γ̃(t),

σ0(0, w) = P0, σ0(1, w) = P.

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Lee13]) again, there exists a smooth
map σ : [0, 1]× [0, 1] → U satisfying the same boundary conditions as (3.7):

(3.8)
σ(t, 0) = γ(t), σ(t, 1) = γ̃(t),

σ(0, w) = P0, σ(1, w) = P.

We set T and W as in (3.6). For each fixed w ∈ [0, 1], there exists Xw : [0, 1] → Mn(R) such that

dXw

dt
(t) = Xw(t)T (t, w), Xw(0) = X0.

Since T (t, w) is smooth in t and w, the map

X̌ : [0, 1]× [0, 1] 3 (t, w) 7→ Xw(t) ∈ Mn(R)

is a smooth map, because of smoothness in parameter α in Theorem 2.15. To show that X̂(1) =
X̌(1, 0) does not depend on choice of paths, it is sufficient to show that

(3.9) ∂X̌

∂w
= X̌W

holds on [0, 1]× [0, 1]. In fact, by (3.8), W (1, w) = 0 for all w ∈ [0, 1], and then (3.9) implies that
X̌(1, w) is constant.

We prove (3.9): By definition, it holds that

(3.10) ∂X̌

∂t
= X̌T, X̌(0, w) = X0

for each w ∈ [0, 1]. Hence by (3.5),

∂

∂t

∂X̌

∂w
=

∂2X̌

∂t∂w
=

∂2X̌

∂w∂t
=

∂

∂w
(X̌T )

=
∂X̌

∂w
T + X̌

∂T

∂w
=

∂X̌

∂w
T + X̌

(
∂W

∂t
+ TW −WT

)
=

∂X̌

∂w
T + X̌

∂W

∂t
+

∂X̌

∂t
W − X̌WT

=
∂

∂t

(
X̌W

)
+

(
∂X̌

∂w
− X̌W

)
T.

So, the function Yw(t) := ∂X̌/∂w − X̌W satisfies the ordinary differential equation

dYw

dt
(t) = Yw(t)T (t, w), Yw(0) = O

for each w ∈ [0, 1]. Thus, by the uniqueness of the solution, Yw(t) = O holds on [0, 1] × [0, 1].
Hence we have (3.9).

Thus, X̂(1) depends only on the end point P of the path. Hence we can set X(P) := X̂(1) for
each P ∈ U , and obtain a map X : U → Mn(R). Finally we show that X is the desired solution.
The initial condition X(P0) = X0 is obviously satisfied. On the other hand, if we set

Z(δ) := X(u1, . . . , uj + δ, . . . , um),
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Z(δ) satisfies the equation (3.4) for the path γ(δ) := (u1, . . . , uj + δ, . . . , um) with Z(0) = X(P).
Since Ωγ = Ωj ,

∂X

∂uj
(P) =

dZ

dδ

∣∣∣∣
δ=0

= Z(0)Ωj(P) = X(P)Ωj(P)

which completes the proof.

Application: Poincaré’s lemma.

Theorem 3.6 (Poincaré’s lemma). If a differential 1-form

ω =

m∑
j=1

αj(u
1, . . . , um) duj

defined on a simply connected domain U ⊂ Rm is closed, that is, dω = 0 holds, then there exists a
C∞-function f on U such that df = ω. Such a function f is unique up to additive constants.

Proof. Since

dω =
∑
i<j

(
∂αj

∂ui
− ∂αi

∂uj

)
dui ∧ duj ,

the assumption is equivalent to

(3.11) ∂αj

∂ui
− ∂αi

∂uj
= 0 (1 5 i < j 5 m).

Consider a system of linear partial differential equations with unknown ξ, a 1 × 1-matrix valued
function (i.e. a real-valued function), as

(3.12) ∂ξ

∂uj
= ξαj (j = 1, . . . ,m), ξ(u1

0, . . . , u
m
0 ) = 1.

Then it satisfies (3.3) because of (3.11). Hence by Theorem 3.5, there exists a smooth function
ξ(u1, . . . , um) satisfying (3.12). In particular, Proposition 2.8 yields ξ = det ξ never vanishes.
Hence ξ(u1

0, . . . , u
m
0 ) = 1 > 0 means that ξ > 0 holds on U . Letting f := log ξ, we have the

function f satisfying df = ω.
Next, we show the uniqueness: if two functions f and g satisfy df = dg = ω, it holds that

d(f − g) = 0. Hence by connectivity of U , f − g must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify R2 with
the complex plane C. It is well-known that a smooth function

(3.13) f : U 3 u+ i v 7−→ ξ(u, v) + i η(u, v) ∈ C (i =
√
−1)

defined on a domain U ⊂ C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

(3.14) ∂ξ

∂u
=

∂η

∂v
,

∂ξ

∂v
= −∂η

∂u
.

Definition 3.7. A function f : U → R defined on a domain U ⊂ R2 is said to be harmonic if it
satisfies

∆f = fuu + fvv = 0.

The operator ∆ is called the Laplacian.
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Proposition 3.8. If function f in (3.13) is holomorphic, ξ(u, v) and η(u, v) are harmonic func-
tions.

Proof. By (3.14), we have

ξuu = (ξu)u = (ηv)u = ηvu = ηuv = (ηu)v = (−ξv)v = −ξvv.

Hence ∆ξ = 0. Similarly,

ηuu = (−ξv)u = −ξvu = −ξuv = −(ξu)v = −(ηv)v = −ηvv.

Thus ∆η = 0.

Theorem 3.9. Let U ⊂ C = R2 be a simply connected domain and ξ(u, v) a C∞-function harmonic
on U8 Then there exists a C∞ harmonic function η on U such that ξ(u, v)+i η(u, v) is holomorphic
on U .

Proof. Let α := −ξv du+ ξu dv. Then by the assumption,

dα = (ξvv + ξuu) du ∧ dv = 0

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 1.9), there exists a function η such that dη = ηu du + ηv dv = α. Such a function η
satisfies (3.14) for given ξ. Hence ξ + i η is holomorphic in u+ i v.

Example 3.10. A function ξ(u, v) = eu cos v is harmonic. Set

α := −ξv du+ ξu dv = eu sin v du+ eu cos v dv.

Then η(u, v) = eu sin v satisfies dη = α. Hence

ξ + i η = eu(cos v + i sin v) = eu+i v

is holomorphic in u+ i v.

Definition 3.11. The harmonic function η in Theorem 3.9 is called the conjugate harmonic func-
tion of ξ.

8The theorem holds under the assumption of C2-differentiability.
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Exercises

3-1 Let
ξ1(u, v) :=

u

u2 + v2
, ξ2(u, v) := log

√
u2 + v2

be functions defined on non-simply connected domain U := R2 \ {(0, 0)}.

(1) Show that both ξ1 and ξ2 are harmonic on U .
(2) Verify that there exists a conjugate harmonic function η1 of ξ1 on U .
(3) Prove that there exists no conjugate harmonic function η2 of ξ2 on U .

3-2 Consider a linear system of partial differential equationcs for 3 × 3-matrix valued unknown
X on a domain U ⊂ R2 as

∂X

∂u
= XΩ,

∂X

∂v
= XΛ,

Ω :=

 0 −α −h1
1

α 0 −h2
1

h1
1 h2

1 0

 , Λ :=

 0 −β −h1
2

β 0 −h2
2

h1
2 h2

2 0

 ,

where (u, v) are the canonical coordinate system of R2, and α, β and hi
j (i, j = 1, 2) are

smooth functions defined on U . Write down the integrability conditions in terms of α, β and
hi
j .
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4 A review of surface theory

In this section, we review the classical surface theory in the Euclidean 3-space. The textbook
[UY17] is one of the fundamental references of this material.

4.1 Preliminaries

Euclidean space Let R3 be the Euclidean 3-space, that is, the 3-dimensional affine space R3

endowed with the Euclidean inner product “·”, where9

(4.1) x · y := xTy = x1y1 + x2y2 + x3y3, where x =

x1

x2

x3

 , y =

y1

y2

y3

 ∈ R3.

The Euclidean norm | | and the Euclidean distance d( , ) is defined as

(4.2) |x| :=
√
x · x =

√
(x1)2 + (x2)2 + (x3)2, d(x,y) = |y − x| (x,y ∈ R3).

A map f : R3 → R3 is called an isometry if it preserves the distance function d: d
(
f(x), f(y)

)
=

d(x,y) (x, y ∈ R3).

Fact 4.1. A map f : R3 → R3 is an isometry if and only if f is in a form

(4.3) f(x) = Ax+ b (A ∈ O(3), b ∈ R3),

where O(3) is the set of 3× 3 orthogonal matrices.

An isometry in (4.3) is said to be orientation preserving if A ∈ SO(3), that is, A is an orthogonal
matrix with detA = 1.

The outer product or vector product x× y of x, y ∈ R3 is defined by

(4.4) det(x,y, z) = (x× y) · z.

Immersed surfaces Let U ⊂ R2 be a domain of the uv-plane R2. A C∞-map p : U → R3 is
called an immersion or a parametrization of a regular surface if

(4.5) pu(u, v) :=
∂p

∂u
(u, v), and pv(u, v) :=

∂p

∂v
(u, v) are linearly independent

at each point (u, v) ∈ U . The unit normal vector field to an immersion p : U → R3 is a C∞-map
ν : U → R3 satisfying

(4.6) ν · pu = ν · pv = 0, |ν| = 1

for each point on U .
The first fundamental form ds2 is defined by

(4.7) ds2 := dp · dp = E du2 + 2F du dv +Gdv2,(
E := pu · pu, F := pu · pv = pv · pu, G := pv · pv

)
,

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).
The three functions E, F and G defined on U are called the coefficients of the first fundamental
form.

16. May, 2025. Revisyed: 23. May, 2025
9According to a traditional manner, the indices of coordinate functions are written as superscripts.
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Similarly, taking account of the identity

νu · pv = (ν · pv)u − ν · pvu = 0− ν · pvu = −ν · puv = νv · pu,

we define the second fundamental form as

(4.8) II := −dν · dp = Ldu2 + 2M dudv +N dv2,(
L := −pu · νu,M := −pu · νv = −pv · νu, N := −pv · νv

)
.

The symmetric matrices

Î :=

(
E F
F G

)
=

(
pTu
pTv

)
(pu, pv), ÎI :=

(
L M
M N

)
= −

(
pTu
pTv

)
(νu, νv)

are called the first and second fundamental matrices, respectively.
By the Cauchy-Schwarz inequality, it holds that

EG− F 2 = |pu|2|pv|2 − (pu · pv)2 > 0,

and then the first fundamental matrix Î is a regular matrix. The area element of the surface is
defined as

(4.9) dA :=
√
EG− F 2 du dv.

In fact, the area of a part of surface corresponding to a relatively compact domain Ω ⊂ U is
computed as

A(Ω) :=

∫∫
Ω

dA =

∫∫
Ω

√
EG− F 2 du dv.

Since Î is regular, the matrix

(4.10) A := Î −1 ÎI =

(
A1

1 A1
2

A2
1 A2

2

)
,

called the Weingarten matrix, is defined. It is known that the eigenvalues λ1 and λ2 of A are real
numbers, and called the principal curvatures. The Gaussian curvature K and the mean curvature
H are defined as

(4.11) K := λ1λ2 = detA =
det ÎI

det Î
, H :=

1

2
(λ1 + λ2) =

1

2
trA.

4.2 Gauss frames

To simplify computations, and for a future generalization for higher dimensional case, we switch
the notation here to the “index” style. Write the coordinate system of U ⊂ R2 by (u1, u2) instead
of (u, v), and denote

f,1 =
∂f

∂u1
, f,2 =

∂f

∂u2
,

that is, the subscript number following a comma means the partial derivative with respect to the
corresponding variable. Using these notations, the first fundamental form is expressed as

(4.12) ds2 = dp · dp =

2∑
i,j=1

gij du
i duj , (gij := p,i · p,j).
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Similarly, the second fundamental form is written as

(4.13) II = −dp · dν =

2∑
i,j=1

hij du
i duj , (hij := −p,i · ν,j = −p,j · ν,i = p,ij · ν).

Since the first fundamental matrix Î = (gij)i,j=1,2 has positive determinant, its inverse matrix
exists. We denote the component of the inverse by Î −1 = (gij), using superscripts instead of
subscripts. By definition, it holds that

(4.14) gij = gji and
2∑

k=1

gikgkj = δij =

{
1 (i = j)

0 (otherwise),

where δ stands for Kronecker’s delta symbol. Using these, the Weingarten matrix A as in (4.10)
and the Gaussian curvature K in (4.11) are expressed as

(4.15) A = (Ai
j), Ai

j =

2∑
k=1

gikhkj , K = detA =
det(hij)

det(gij)
.

Since p is an immersion, {p,1(u1, u2), p,2(u
1, u2), ν(u1, u2)} are linearly independent for each

point (u1, u2) ∈ U . Hence we obtain a smooth map

(4.16) F : U 3 (u1, u2) 7→
(
p,1(u

1, u2), p,2(u
1, u2), ν(u1, u2)

)
∈ GL(3,R),

where GL(3,R) is the set of 3× 3 regular matrices with real components. The map F is called the
Gauss frame of the surface p.

Theorem 4.2. The Gauss frame F satisfies

(4.17) ∂F
∂uj

= FΩj

Ωj :=

Γ 1
1j Γ 1

2j −A1
j

Γ 2
1j Γ 2

2j −A2
j

h1j h2j 0

 (j = 1, 2),

where hij’s are the coefficients of the second fundamental form, Ai
j’s are the components of the

Weingarten matrix, and

(4.18) Γ k
ij :=

1

2

2∑
l=1

gkl(gil,j + glj,i − gij,l), (i, j, k = 1, 2)

The functions Γ k
ij in (4.18) are called the Christoffel symbols, and the equation (4.17) is called

the Gauss-Weingarten formula. By decomposing F into columns, the Gauss-Weingarten formula
is restated as

p,ij =

(
2∑

l=1

Γ l
ijp,l

)
+ hijν,(4.19)

ν,j = −
2∑

l=1

Al
jp,l.(4.20)

The equality (4.19) and (4.20) are called the Gauss formula and Weingarten formula, respectively.

Proof of Theorem 4.2. Since {p,1, p,2, ν} is a basis of R3 at each point (u1, u2) ∈ U , the second
derivative p,ij is expressed as a linear combination of {p,1, p,2, ν}:

(4.21) p,ij = Λ1
ijp,1 + Λ2

ijp,2 + ηijν =

(
2∑

l=1

Λl
ijp,l

)
+ ηijν,
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where Λl
ij and ηij are smooth functions in (u1, u2). Since ν is perpendicular to p,l, (4.13) implies

ηij = p,ij · ν = hij .

On the other hand, taking inner product with p,k, we have

(4.22) p,ij · p,k =

2∑
l=1

Λl
ijp,l · p,k =

2∑
l=1

glkΛ
l
ij .

Here, by the Leibniz rule, the left-hand side is computed as

p,ij · p,k = (p,i · p,k),j − p,i · p,kj = gik,j − (p,i · p,j),k + p,ik · p,j
= gik,j − gij,k + (p,k · p,j),i − p,ij · p,k = gik,j − gij,k + gjk,i − p,ij · p,k,

and thus, p,ij · p,k = 1
2 (gik,j + gkj,i − gij,k). Then (4.22) turns to be

1

2
(gik,j + gkj,i − gij,k) = p,ij · p,k =

2∑
l=1

glkΛ
l
ij .

Multiplying gsk on the both sides of the equality above, and summing up it over k = 1 and 2, we
have

1

2

2∑
k=1

gsk(gik,j + gkj,i − gij,k) =
2∑

k=1

2∑
l=1

gskglkΛ
l
ij =

2∑
l=1

2∑
s=1

gskgklΛ
l
ij =

2∑
l=1

δsl Λ
l
ij = Λs

ij .

This implies that Λl
ij coincides with the Christoffel symbol (4.18). Summing up, the Gauss formula

(4.19) is proven.
Next, we prove the Weingarten formula: Since ν · ν = 1, ν,j is perpendicular to ν. Hence we

can write

ν,j =

2∑
l=1

Bl
jp,l,

and then by (4.21),

−hij = p,i · ν,j =
2∑

l=1

Bl
jp,l · p,i =

2∑
l=1

gilB
l
j .

So,

Bk
j =

2∑
l=1

δkl B
l
j =

2∑
l=1

2∑
s=1

gksgslB
l
j = −

2∑
s=1

gkshjs = −Ak
j ,

proving (4.20).

For later use, we prepare the following formulas on the Christoffel symbols:

Proposition 4.3. The Christoffel symbol in (4.18) satisfies

Γ k
ij = Γ k

ji(4.23)

gij,k =

2∑
l=1

(gljΓ
l
ik + gilΓ

l
kj),(4.24)

∂g

∂ui
= 2g

2∑
l=1

Γ l
il, (g := det Î = g11g22 − g212),(4.25)

where the indices i, j and k run over 1 and 2.
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Proof. Since

p,ij = Γ 1
ijp,1 + Γ 2

ijp,2 + hijν and p,ji = Γ 1
jip,1 + Γ 2

jip,2 + hjiν,

(4.23) follows.
The second formula (4.24) is obtained as

gij,k =
(
p,i · p,j

)
,k

= p,ik · p,j + p,i · p,jk

=

(
2∑

l=1

Γ l
ik(p,l · p,j) + hik(ν · p,j)

)
+

(
2∑

l=1

Γ l
jk(p,i · p,l) + hjk(p,i · ν)

)

=

2∑
l=1

(
gljΓ

l
ik + gilΓ

l
kj

)
.

Finally, differentiating g = det Î ,

∂g

∂ui
= tr

(˜̂
I
∂ Î

∂ui

)
= (det Î ) tr

(
Î −1 Î ,i

)
= g

2∑
l,m=1

glmglm,i

= g

2∑
l,m,s=1

glm (gmsΓ
s
li + glsΓ

s
im) = g

 2∑
l,s=1

δlsΓ
s
li +

2∑
m,s=1

δms Γ s
im


= g

(
2∑

l=1

Γ l
li +

2∑
m=1

Γm
im

)
= 2g

2∑
l=1

Γ l
il,

where ˜̂I = (det Î ) Î −1 is the cofactor matrix of Î . Thus we have (4.25).

4.3 Orthonormal frames

The Gauss and Weingarten formulas (Theorem 4.2) are the fundamental equations which express
how the fundamental forms determine shape of surfaces. In this section, another formulation of
Gauss-Weingarten formulas using orthonormal frames is given. In this subsection, we write the
coordinate system of R2 by (u, v), again.

Adapted frames

Let p : U → R3 be an immersion of a domain U ⊂ R2 into the Euclidean 3-space, and take the
unit normal vector field ν : U → R3 of p. For simplicity, we assume that ν is compatible to the
canonical orientation of U , that is, detF = det(pu, pv, ν) > 0, where F is the Gauss frame.

Definition 4.4. A C∞-map E = (e1, e2, e3) : U → SO(3) is called an adapted (orthonormal)
frame of the surface p : U → R3 if e3 coincides with the unit normal vector field ν.

Example 4.5. Let p : R2 ⊃ U 3 (u, v) 7→ p(u, v) ∈ R3 be an immersion and let ν be the unit
normal vector field of p which is compatible to the orientation of U . We let

e01 :=
1√
E
pu, e02 :=

1√
E
√
EG− F 2

(Epv − Fpu),

where E, F , G are the coefficients of the first fundamental form as in (4.7). Since ν := e03 is
perpendicular to both pu and pv, E0 := (e01, e

0
2, e

0
3) is an adapted frame of p. Remark that {e01, e02}

is an orthonormal frame of the orthogonal complement of ν (that is, the tangent plane) obtained
by applying the Gram-Schmidt orthogonalization to (pu, pv).
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Gauge transformations

An adapted frame has an ambiguity of a rotation of the frame (e1, e2) of the tangent plane. In
fact, for an arbitrary function φ : U → R,

(4.26) Ẽ = ER, R := Rφ =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1


is another adapted frame. Conversely, we have the following:

Lemma 4.6. Let E and Ẽ be adapted frames of the surface p : U → R3, where U is a simply
connected domain. Then there exists a function φ : U → R satisfying (4.26).

Proof. Since E and Ẽ are valued in SO(3) with common third columns, an SO(3)-valued function
R := E−1Ẽ is expressed as

R =

a −b 0
b a 0
0 0 1

 =

(
R0 0
0 1

)
,

(
R0 =

(
a −b
b a

)
: U → SO(2)

)
,

where a and b are C∞-functions defined on U . Fix a point (u0, v0) ∈ U . Since R0 ∈ SO(2),
a2 + b2 = 1, and then there exists an angle φ0 such that

(4.27) a(u0, v0) = cosφ0, b(u0, v0) = sinφ0.

Consider a differential 1-form

ω := −b da+ a db = (−bau + abu) du+ (−bav + abv) dv.

Then
dω =

(
(−bav + abv)u − (−bau + abu)v

)
du ∧ dv = 2(aubv − buav) du ∧ dv.

On the other hand, differentiating a2 + b2 = 1, it holds that

0 = a da+ b db = (aau + bbu)du+ (aav + bbv)dv, that is, aau = −bbu, aav = −bbv.

Hence

adω = 2(aaubv − buaav) du ∧ dv = 2(−bbubv + buaav) du ∧ dv = 0,

bdω = 2(aubbv − bbuav) du ∧ dv = 2(−auaav + aauav)du ∧ dv = 0,

which implies that dω = 0 because (a, b) 6= (0, 0). Then by the Poincaré lemma (Theorem 1.9),
there exists the unique function φ : U → R such that

(4.28) dφ = ω = −b da+ a db, φ(u0, v0) = φ0.

Set ã := cosφ and b̃ := sinφ. Then by (4.28), both R0 and

R̂0 =

(
cosφ − sinφ
sinφ cosφ

)
satisfies the same systems of differential equations

Xu = X

(
0 −φu

φu 0

)
, Xv = X

(
0 −φv

φv 0

)
with the same initial condition. Hence R0 = R̂0, which is the conclusion.

A transformation of adapted frames as in Lemma 4.6 is called a gauge transformation.
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Gauss-Weingarten formulas

Let E = (e1, e2, e3) be an adapted frame of a surface p : U → R3. Since e1 and e2 are perpendicular
to ν, there exists a matrix

(4.29) Ǐ =

(
g11 g12
g21 g22

)
such that (pu, pv) = (e1, e2) Ǐ .

On the other hand, since e3 · e3 = 1, the derivatives of e3 are perpendicular to e3. Then there
exists a matrix ǏI such that

(4.30) ǏI =

(
h1
1 h1

2

h2
1 h2

2

)
such that

(
(e3)u, (e3)v

)
= −(e1, e2) ǏI .

Lemma 4.7. The Gaussian curvature K satisfy

K =
det ǏI

det Ǐ

Proof. The first and second fundamental matrices are

Î =

(
pTu
pTv

)
(pu, pv) = Ǐ T

(
eT1
eT2

)
(e1, e2) Ǐ = ( Ǐ T ) Ǐ ,

ÎI = −
(
pTu
pTv

)
(νu, νv) = Ǐ T

(
eT1
eT2

)
(e1, e2) ǏI = ( Ǐ T ) ǏI .

Hence we have the conclusion by (4.11).

Proposition 4.8. There exist functions α, β defined on U such that

(4.31) Eu = EΩ, Ev = EΛ

Ω :=

 0 −α −h1
1

α 0 −h2
1

h1
1 h2

1 0

 , Λ :=

 0 −β −h1
2

β 0 −h2
2

h1
2 h2

2 0

 .

Proof. Since E is SO(3)-valued, Ω := E−1Eu and Λ := E−1Ev are skew-symmetric matrices. The
third columns of Ω and Λ are nothing but the definition of the matrix ǏI .

Definition 4.9. The differential form

µ := αdu+ β dv

is called the connection form with respect to the adapted frame.

Lemma 4.10. The connection forms µ and µ̃ of the adapted frames E and Ẽ as in Lemma 4.6
satisfy

µ̃ = µ+ dφ.

Proof. Let Ω̃ := Ẽ−1Ẽu and Λ̃ := Ẽ−1Ẽv. Then

Ω̃ = Ẽ−1(EuR+ ERu) = Ẽ−1(EΩR+ ERu) = Ẽ−1Ẽ(R−1ΩR+R−1Ru) = R−1ΩR+R−1Ru,

and Λ̃ = R−1ΛR+R−1Ru hold. Then the conclusion follows.
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Exercises

4-1 Assume the first and second fundamental forms of the surface p(u1, u2) are given in the form

ds2 = e2σ((du1)2 + (du2)2), II =
2∑

i,j=1

hij du
i duj ,

where σ is a smooth function in (u1, u2).

(1) Compute the matrices Ωj (j = 1, 2) in (4.17).
(2) Set (u, v) = (u1, u2), e1 := e−σpu1 , e2 := e−σpu2 , and e3 = ν, where ν is the unit

normal vector field. Compute the matrices Ω and Λ in (4.31) for the orthonormal frame
E = (e1, e2, e3).

4-2 Assume the first and second fundamental forms of the surface p(u1, u2) are given in the form

ds2 = (du1)2 + 2 cos θ du1 du2 + (du2)2, II = 2 sin θ du1 du2,

where θ is a smooth function in (u1, u2).

(1) Compute the matrices Ωj (j = 1, 2) in (4.17).
(2) Find an adapted frame, and compute the matrices Ω and Λ in (4.31).
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5 The Gauss and Codazzi equations

5.1 Gauss and Codazzi equations

The Gauss-Weingarten formulas (Theorem 4.2) can be considered as a system of partial differential
equations with unknown F , whose coefficient matrices are Ω1 and Ω2.
Remark 5.1. The coefficient matrices Ω1 and Ω2 in the Gauss-Weingarten formula are expressed
in terms of the coefficients of the first and second fundamental forms. In fact, explicit formula for
components of Ωj in terms of (gij) and (hij) are found in (4.15) and (4.18).

The following proposition is a direct conclusion of Proposition 3.2 and Theorem 4.2:

Proposition 5.2. Let p : U → R3 be a parametrized surface defined on a domain U of u1u2-plane,
and let (gij) and (hij) be the coefficients of the first and second fundamental forms. Then the
matrices Ω1 and Ω2 in (4.17) satisfy

(5.1) ∂Ω1

∂u2
− ∂Ω2

∂u1
−Ω1Ω2 +Ω2Ω1 = O

In this section, we show that nine equalities (5.1) are reduced to three equalities, as follows:

Theorem 5.3 (Gauss and Codazzi equations). The integrability condition (5.1) is equivalent to
the following three equalities:

h11,2 − h21,1 =
∑
j

(
Γ j
21h1j − Γ j

11h2j

)
(5.2)

h12,2 − h22,1 =
∑
j

(
Γ j
22h1j − Γ j

12h2j

)
(5.3)

Kds2 =
1

g
(h11h22 − h12h21)

(
= K

)
,(5.4)

where g := det(gij) = g11g22 − g12g21, and

Kds2 :=
1

g
R12,(5.5)

Rjk :=
1

2
(g1k,2j − g1j,2k + g2j,1k − g2k,1j)−

∑
i,s

gis(Γ
s
k2Γ

i
1j − Γ s

k1Γ
i
2j)(5.6)

+ 2
∑
l,s

gkl(Γ
l
s2Γ

s
1j − Γ l

1sΓ
s
2j).

The equalities (5.2) and (5.3) are called the Codazzi equations , and (5.4) is called the Gauss
equation.
Remark 5.4. Let

hij;k := hij,k −
∑
l

(
Γ l
ikhlj − Γ l

kjhil

)
.

Then
∇II :=

∑
i,j,k

hij;kdu
i ⊗ duj ⊗ duk

does not depend on the coordinate system, which is called the covariant derivative of the second
fundamental form. The Codazzi equations is equivalent to hij;k = hki;j , that is, symmetricity of
∇II.

23. May, 2025. Revised: 30. May, 2024
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Remark 5.5. The quantity Kds2 in (5.5) is determined only by the first fundamental form, and
one can show that it is invariant under coordinate changes. We call it the (intrinsic) Gaussian
curvature of ds2. The Gauss equation (5.4) claims that the intrinsic Gaussian curvature is identical
to the Gaussian curvature of the surface.

Proof of Theorem 5.3. We setI11 I12 I13
I21 I22 I23
I31 I32 I33

 := Ω1,2 −Ω2,1 −Ω1Ω2 +Ω2Ω1.

Then the integrability condition (5.1) is equivalent to Iij = 0 (i, j = 1, 2, 3).
Step 1. By symmetricity of hij and gij ,

I33 = h11A
1
2 + h12A

2
2 − h21A

1
1 − h22A

2
1 =

∑
l

(h1lA
l
2 − h2lA

l
1)

=
∑
l

(
h1l

∑
s

glshs2 − h2l

∑
s

glshs1

)
=
∑
l,s

glsh1lhs2 −
∑
l,s

glshs1h2l =
∑
l,s

glsh1lhs2 −
∑
l,s

gslhl1h2s = 0.

Thus the condition I33 = 0 is satisfied automatically.
Step 2. Since

I3j = h1j,2 − h2j,1 −
∑
l

(Γ l
2jhl1 − Γ l

1jhl2) (j = 1, 2),

the conditions I3j = 0 (j = 1, 2) are equivalent to the Codazzi equations (5.2) and (5.3).
Step 3. For j = 1, 2

Ij3 = −Aj
1,2 +Aj

2,1 +
∑
l

(Γ j
1lA

l
2 − Γ j

2lA
l
1)

= −
∑
l

(gjlh1l),2 +
∑
l

(gjlhl2),1 +
∑
l,s

gls(h2sΓ
j
1l − h1sΓ

j
2l)

= −
∑
l

gjl(h1l,2 − hl2,1)−
∑
l

(gjl,2h1l − gjl,1hl2) +
∑
l,s

gls(h2sΓ
j
1l − h1sΓ

j
2l)

= −
∑
l

gjl(h1l,2 − hl2,1) +
∑
l

∑
α,β

gαjglβ(gαβ,2h1l − gαβ,1hl2) +
∑
l,s

gls(h2sΓ
j
1l − h1sΓ

j
2l)

= −
∑
l

gjl(h1l,2 − hl2,1) +
∑
l,α,β

gαjglβ
∑
s

(
(gαsΓ

s
β2 + gsβΓ

s
2α)h1l − (gαsΓ

s
β1 + gsβΓ

s
1α)hl2

)
+
∑
l,s

gls(h2sΓ
j
1l − h1sΓ

j
2l)

= −
∑
l

gjl(h1l,2 − hl2,1) +
∑
l,β

glβΓ j
β2h1l +

∑
l,α

gjαΓ l
α2h1l −

∑
l,β

glβΓ j
β1h2l −

∑
l,α

gjαΓ l
α1h2l

+
∑
l,s

gls(h2sΓ
j
1l − h1sΓ

j
2l)

= −
∑
l

gjl(h1l,2 − hl2,1)−
∑
s

(Γ s
l2h1s − Γ s

1lh2s) = −
∑
l

gjlI3l ,

that is, (
I13
I23

)
= −

(
g11 g12

g21 g22

)(
I31
I32

)
.
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Here, we used Proposition 4.3 and the relation Î −1
,k = − Î −1 Î ,k Î

−1, i.e.,

gij,k = −
∑
αβ

gαigjβgαβ,k

Hence the conditions Ij3 = 0 (j = 1, 2) are equivalent to I3j = 0 (j = 1, 2).
Step 4. Since

Iij = Γ i
1j,2 − Γ i

2j,1 −
∑
l

(Γ i
1lΓ

l
2j − Γ i

2lΓ
l
1j) +Ai

1hj2 −Ai
2hj1,

for i, j = 1, 2, we have ∑
i

gikI
i
j = Rjk + hk1hj2 − hk2hj1,

where Rjk is the quantity given by (5.6). Since the right-most term of the definition of Rjk is
computed as

∑
l,s

gkl(Γ
s
1jΓ

l
s2 − Γ s

2jΓ
l
s1) =

1

2

∑
s,t

(
(gk2,s + gsk,2 − g2s,k)(gtj,1 + g1t,j − g1j,t)

− (gk1,t + gtk,2 − g1k,t)(gsj,22 + g2s,j − g2j,s)
)
,

Hence Rjk is skew symmetric in j and k:

R12 = −R21, R11 = R22 = 0.

Therefore Iij = 0 for i, j = 1, 2 is equivalent to the Gauss equation (5.4).

5.2 Integrability conditions for orthonormal frames

Under the formulation with orthonormal frame as in Proposition 4.8, we can compute the inte-
grability conditions. Since Ω and Λ are skew-symmetric matrices, the conditions consist of three
scalar equalities obviously. Such a formulation will be discussed in the lecture on the next quarter.
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Exercises

Let p : U → R3 be a regular surface of domain U ⊂ R2, and denote by (u1, u2) = (u, v) the
coordinate system of U . And write the first and second fundamental forms as

ds2 = E du2 + 2F du dv +Gdv2 =
∑
i,j

gij du
i duj ,

II = Ldu2 + 2M dudv +N dv2 =
∑
i,j

hij du
i duj ,

respectively.

5-1 Assume L = N = 0, that is, II = 2M dudv = 2h12 du
1 du2, Prove that, if the Gaussian

curvature K is negative constant,

Ev = Gu = 0, that is, g11,2 = g22,1 = 0.

5-2 Assume F = 0 and E = G = e2σ, where σ is a function in (u, v). Let z = u+ iv (i =
√
−1)

and define a complex-valued function q in z by

q(z) :=
L(u, v)−N(u, v)

2
− iM(u, v).

Prove that the Codazzi equations are equivalent to

∂q

∂z̄
= e2σ

∂H

∂z
,

where H is the mean curvature, and

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂z̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.
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6 The fundamental theorem for surfaces

6.1 The statement

Let U be a domain of u1u2-plane and let

(6.1) Î =

(
g11 g12
g21 g22

)
, ÎI =

(
h11 h12

h21 h22

)
,

be two symmetric matrices whose components are real-valued C∞-functions on U . In addition,
assume

(6.2) g11 > 0, g22 > 0, and g11g22 − g12g21 > 0

hold on U . In other words, Î is a positive-definite matrix at each point on U . Define

(6.3) Γ k
ij =

1

2

2∑
l=1

gkl(gkj,i + gik,j − gij,k), Ai
j =

2∑
l=1

gilhlj

where (gij) = (gij)
−1 is the inverse matrix of (gij).

Theorem 6.1 (The fundamental theorem for surface theory). Assume U is simply connected,
and (gij) and (hij) satisfy the Gauss equation (5.4) and the Codazzi equations (5.2)–(5.3) in the
previous section. Then there exists a regular surface p : U → R3 such that

• the first fundamental form of p is ds2 =
∑

i,j gijdu
i duj,

• the second fundamental form of p with respect to the unit normal vector field ν := (p,1 ×
p,2)/|p,1 × p,2| coincides with II =

∑
i,j hijdu

i duj.

Moreover, such a surface p is unique up to a transformation

p 7→ Rp+ a, R ∈ SO(3), a ∈ R3.

6.2 Uniqueness

Here we shall prove the uniqueness part of Theorem 6.1. Let p and p̃ be regular surfaces in R3

defined on a domain U of u1u2-plane10, with unit normal vector fields

ν :=
p,1 × p,2
|p,1 × p,2|

and ν̃ :=
p̃,1 × p̃,2
|p̃,1 × p̃,2|

,

respectively. Then the Gauss frame of p and p̃ are written as

F := (p,1, p,2, ν), and F̃ := (p̃,1, p̃,2, ν̃),

respectively. Assume the coefficients (gij) and (hij)of the first and second fundamental forms are
common for p and p̃. Then F and F̃ satisfy the Gauss-Weingarten equations (4.17)

(6.4) F,j = FΩj and F̃,j = F̃Ωj , where Ωj =

Γ 1
1j Γ 1

2j −A1
j

Γ 2
1j Γ 2

2j −A2
j

h1j h2j 0

 .

Hence, for i = 1, 2,

∂

∂uj
F̃F−1 = F̃,jF−1 + F̃(F−1),j = F̃,jF−1 − F̃F−1F,jF−1 = F̃ΩjF−1 − F̃ΩjF−1 = O

30. May, 2025. 06. June, 2025
10The uniqueness does not require simple connectedness of U .
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hold on U . Since we have assumed that U is a domain, U is (arcwise) connected. This implies
that R := F̃F−1 is a constant matrix on U . Moreover, since p and p̃ share their first fundamental
forms, it holds that

FTF =

p,1 · p,1 p,1 · p,2 p,1 · ν
p,2 · p,1 p,2 · p,2 p,2 · ν
ν · p,1 ν · p,2 ν · ν

 =

g11 g12 0
g21 g22 0
0 0 1

 = F̃T F̃ = FTRTRF .

Hence RTR = id, that is, R is an orthogonal matrix. Moreover,

ν̃ =
p̃,1 × p̃,2
|p̃,1 × p̃,2|

= Rν = R
p,1 × p,2
|p,1 × p,2|

implies R(p,1 × p,2) = (Rp,1)× (Rp,2), hence detR = 1. Summing up, the Gauss frames F and F̃
are related as F̃ = RF (R ∈ SO(3)). By the first and second columns of this relation, it holds that

dp̃ = p̃,1 du
1 + p̃,2 du

2 = Rp,1du
1 +Rp,2 du

2 = R(dp).

Hence, by connectivitity of U again, a := p̃−Rp is a constant vector.

6.3 Existence

Next, we show the existence part of Theorem 6.1.

Lemma 6.2. Let (γij) be a positive definite symmetric matrix, that is, γ11 and γ22 are positive,
γ11γ22 − γ12γ21 > 0 and γ12 = γ21. Then there exists a vectors v1, v2 and v3 in R3 such that

vi · vj = γij , v3 · vj = 0, v3 · v3 = 1, and det(v1,v2,v3) > 0

hold for i, j = 1, 2.

Proof. Let θ ∈ (0, π) be an angle satisfying cos θ = γ12/
√
γ11γ22 ∈ (−1, 1) \ {0}, and set

v1 :=
√
γ11

1
0
0

 , v2 :=
√
γ22

cos θ
sin θ
0

 , v3 :=

0
0
1

 .

Then v1, v2 and v3 are desired vectors.

Step 1. We fix a point P0 in U . Then by Lemma 6.2, there exists a matrix F0 such that

(6.5) FT
0 F0 =

g11(P0) g12(P0) 0
g21(P0) g22(P0) 0

0 0 1

 .

Since (gij) and (hij) satisfy the Gauss and Codazzi equations, Theorem 5.3 implies that the
equation (6.4) for unknown matrix-valued function F . So, by Theorem 3.5, there exists a unique
matrix-valued function F defined on U satisfying

(6.6) F,j = FΩj , F(P0) = F0

for a matrix F0 satisfying (6.5). Decompose the solution F into column vectors as

F(u1, u2) = (a1(u
1, u2),a2(u

1, u2),a3(u
1, u2)).
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Then it holds that

∂

∂u2
(a1) = Γ 1

12a1 + Γ 2
12a2 + h12a3,

∂

∂u1
(a2) = Γ 1

21a1 + Γ 2
21a2 + h21a3,

that is,
ω := a1 du

1 + a2 du
2

is a (vector-valued) closed one-form on the simply connected domain U . Hence by Poincaré’s
lemma (Theorem 1.9), there exists a map p : U → R3 with dp = ω, that is,

(6.7) p,1 = a1, p,2 = a2.

Step 2. We shall show that p obtained in the previous step is the desired one. Let F be a solution
of (6.6). Then the symmetric matrix-valued function FTF satisfies a system of linear partial
differential equations

∂FTF
∂uj

= ΩT
j FTF + FTFΩj , FTF(P0) = FT

0 F0

where F0 is a matrix as in (6.5).
On the other hand, consider the matrix-valued function

G :=

g11 g12 0
g21 g22 0
0 0 1

 .

Then, by (6.3), it holds that

(6.8) G,j = ΩT
j G + GΩj G(P0) = FT

0 F0.

Hence FTF and G satisfy the same system of partial differential equations with the same initial
conditions. Thus, the uniqueness of the solution infers FTF = G, that is,a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3

 =

g11 g12 0
g21 g22 0
0 0 1

 .

So, together with (6.7) and that detF > 0

gij = p,i · p,j , ν = a3.

Then
hij = (ai),j · ν = p,ij · ν,

that is, the coefficients of the second fundamental form coincides with (hij).
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Exercises

6-1 Let θ : U → R be a C∞-function defined on a simply connected domain U of the uv-plane
R2. Assuming θ satisfies θuv = sin θ, prove that there exists a surface p : U → R3 whose first
and second fundamental forms are

ds2 = du2 + 2 cos θ du dv + dv2, II = 2 sin θ du dv.

6-2 Let σ : U → R be a C∞-function defined on a simply connected domain U of the uv-plane
R2. Assuming σ satisfies ∆σ = − 1

2 sinh 2σ, prove that there exists a surface p : U → R3 with

ds2 = e2σ(du2 + dv2), II =
1

2

(
(e2σ + 1)du2 + (e2σ − 1)dv2

)
.
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7 An application—Surfaces of constant mean curvature

7.1 Mean curvature

Let p : U 3 (u, v) 7→ p(u, v) ∈ R3 be a regular parametrization of a surface defined on a domain
U ⊂ R2, and let ν be its unit normal vector field. We write first and second fundamental forms as

ds2 = E du2 + 2F du dv +Gdv2, II = Ldu2 + 2M dudv +N dv2,

where(
Î :=

)(E F
F G

)
=

(
pu · pu pu · pv
pv · pu pv · pv

)
,

(
ÎI :=

)(L M
M N

)
= −

(
νu · pu νu · pv
νv · pu νv · pv

)
.

Since the parametrization is regular, the matrix Î is positive definite:

EG− F 2 > 0, E > 0, G > 0.

Then we define the Weingarten matrix A by

A = Î −1 ÎI .

Definition 7.1. The mean curvature of the surface p is defined by

H :=
1

2
trA =

EN − 2FM +GL

2(EG− F )2
.

7.2 Area and mean curvature

To explain geometric meanings of mean curvature, we start with the area of surfaces: Let p : U →
R3 be a regular parametrization of a surface as in the top of this subsection. Take a subdomain
V ⊂ U such that the closure V of V is bounded and contained in U .

Definition 7.2. The area of the image p(V ) of the surface is defined as

Ap(V ) :=

∫∫
V

da, da :=
√
det Î du dv =

√
EG− F 2 du dv.

We call da the area element of p.

For a real number t, pt := p+ tν is called the parallel surface of p with distance t.

Proposition 7.3.

Apt(V ) = Ap(V )− 2t

∫∫
V

H da+ o(t) (t → 0).

Proof. The coefficient matrix of the first fundamental form of pt is obtained as

Î t :=

(
Et F t

F t Gt

)
=

(
(pu + tνu) · (pu + tνu) (pu + tνu) · (pv + tνv)
(pv + tνv) · (pu + tνu) (pv + tνv) · (pv + tνv)

)
=

(
E − 2tL F − 2tM
F − 2tM G− 2tN

)
+ o(t) = Î − 2t ÎI + o(t).

06. June, 2025.
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Then

det Î t = (EG− F 2)− 2t(EN − 2FM +GL) + o(t)

= (EG− F 2)

(
1− 2t

EN − 2FM +GL

EG− F 2
+ o(t)

)
= (EG− F 2) (1− 4tH + o(t)) .

Hence the area element of pt is

dat : =
√
det Î du dv =

√
EG− F 2

√
1− 4tH + o(t) du dv =

(
1− 2tH + o(t)

)
da

Integrating this, we obtain the conclusion.

Roughly speaking, the mean curvature is the rate of change of the area of a family of parallel
surfaces of a surface. The following proposition supports this: We denote by D and S1 = ∂D the
unit closed disc {(u, v) ; u2 + v2 5 1} and its boundary, respectively. Let C ⊂ R3 be a simple
closed curve in R3 and denote SC the set of surfaces p : D → R3 with p(S1) = C.

Fact 7.4. If a surface p ∈ SC has the least area among all surfaces in SC , then the mean curvature
of p identically vanishes.

If you are familiar to the variational method, this means that the Euler-Lagrange equation of
the area functional A : SC → R is “H = 0”. Keeping this fact in mind,

Definition 7.5. A minimal surface is a surface whose mean curvature vanishes identically.

On the other hand, the conditional extremal problem for the area functional, we have

Fact 7.6. When the volume of the enclosed domain is fixed, the closed surface with the least area
is of (non-zero) constant mean curvature.

7.3 Examples of constant mean curvature surfaces

Since the mean curvature is invariant under congruence of R3, we have

Lemma 7.7. Let S ⊂ R3 be a surface (an image of a parametrized surface). Assume for all P
and Q ∈ S, there exists an orientation preserving congruence F of the Euclidean 3-space satisfying
F (S) = S and F (P) = Q. Then the mean curvature of S is constant.

Example 7.8 (The plane). A plane p(u, v) = (u, v, 0) is a minimal surface. In fact, since the unit
normal vector field ν = (0, 0, 1) is constant, II vanishes identically.

Example 7.9 (The round sphere). Let S := S2(r) ⊂ R3 be the sphere of radius r > 0 centered
at the origin. Since the linear action of SO(3) on R3 preserves S2(r) and transitive, the mean
curvature of S2(r) is constant.

Let us compute the value of the mean curvature: For each point p ∈ S2(r), the position vector
p is perpendicular to the tangent plane of S2(r) at p. Hence ν := (1/r)p is the (outward) unit
normal vector.

Consider the parallel surface

St :=

{
p+ tν =

(
1 +

t

r

)
p ; p ∈ S = S2(r)

}
,

which is the sphere ov radius (1 + t/r). Then

Area of St − Area of S = 4π (r + t)
2 − 4πr2 = 8πrt+O(t2).
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catenoid Enneper’s helicoid

Figure 1: Minimal surfaces (cf. [UY17])

unduloid nodoid

Figure 2: Delaunay’s surfaces (constant mean curvature) (cf. [UY17])

Since the mean curvature H is constant, Proposition 7.3 yields that

8πrt = −2t

∫∫
S

H dA = −2tH(area of S) = −t× 8πr2H.

Hence the mean curvature (with respect to the outward unit normal) is −1/r.
Similarly, the mean curvature with respect to the inward unit normal is 1/r.

Example 7.10 (The cylinder). Let S be a circular cylinder of radius r whose axis is the vertical
axis of R3:

S = {x = (x, y, z) ; x2 + y2 = r2}.
Since rotations around the z-axis and vertical translations acts on S transitively, the mean curva-
ture is constant. The same argument as in Example 7.9 works for a finite strip S′ := {(x, y, z) ∈
S ; 0 5 z 5 1}, for example, and one can deduce the mean curvature with respect to outward
(resp. inward) unit normal is −1/(2r) (resp. 1/2r).

Question 7.11. Are there any other constant mean curvature surfaces than the “trivial” examples
above?

7.4 Constant mean curvature surfaces

There are number of examples of constant mean curvature, see Figures 1 and 2.
On the other hand, the following uniqueness theorems are obtained in the middle of 20th

century. Here, a closed surface means an immersion p : S → R3 of a compact 2-manifold without
boundary.
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Figure 3: Wente torus

Fact 7.12 (A. D. Alexandrov[Ale58]). The only closed surfaces of constant mean curvature without
self-intersections are the round spheres.

Fact 7.13 (H. Hopf [Hop53]). The only closed surfaces of constant mean curvature whose genus
zero are the round spheres.

Then the following problem arises:

Question 7.14 (Hopf’s problem). Are there closed surfaces of constant mean curvature other than
the round spheres.

In 1986, H. Wente constructed constant mean curvature torus [Wen86a] (see Figure 3). Besides,
N. Kapouleas also gave examples of constant mean curvature surfaces of genus = 2 [Wen86b, BK14].
These two results are obtained by quite different methods. In this lecture, an outline of Wente’s
construction is introduced as an application of the fundamental theorem for surface theory.

7.5 Wente torus

In this section, we outline the construction of constant mean curvature tori according to Wente
[Wen86a].

Definition 7.15. A function f defined on R2 is said to be doubly periodic if there exists a pair
{v1,v2} of linearly independent vectors in R2 such that

(7.1) f(x+ v1) = f(x+ v2) = f(x)y

holds for any x ∈ R2. The basis {v1,v2} is called the period of f . n

Remark 7.16. If f : R2 → R is doubly periodic with period {v1,v2},

f(x+m1v1 +m2v2) = f(x) x ∈ R2

holds for all (m1,m2) ∈ Z2. In other words, the function f is invariant under the action of the
abelian group

Γ := Zv1 ⊕ Zv2

on R2 as translations.
Since the quotient space T := R2/Γ is a smooth 2-manifold diffeomorphic to the torus, the

doubly periodic function f is considered as a function on T .
So our goal is

• to construct a doubly periodic constant mean curvature immersion p : R2 → R3.

For the construction, we apply the fundamental theorem for surface theory:
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Proposition 7.17. Let σ : R2 → R be a doubly periodic function with period {v1,v2}. If σ satisfies

(7.2) ∆σ = σuu + σvv = −1

2
sinh 2σ,

there exists a parametrized surface p : R2 → R3 with

(7.3) ds2 = e2σ(du2 + dv2), II =
1

2

(
(e2σ + 1)du2 + (e2σ − 1)dv2

)
,

whose mean curvature is identically 1/2. Moreover, there exist matrices Ri ∈ SO(3) and vectors
ai ∈ R3 (i = 1, 2) such that

(7.4) p(x+ vi) = Rip(x) + ai (i = 1, 2)

holds for all x ∈ R2.

Proof. Exercise 6-2 yields the existence of p with (7.3). Moreover, since σ(x+ vi) = σ(x), p(x+
vi) and p(x) have common first and second fundamental forms. Hence the uniqueness of the
fundamental theorem implies the existence of Ri and ai as (7.4).

In [Wen86a, Section IV], Wente constructed the solutions of (7.2) as follows:

Let a and b be positive numbers, and set Ω = [0, a] × [0, b] ⊂ R2, which is a closed
rectangle. First, consider the boundary value problem

∆σ = −1

2
sinh 2σ on Ω, σ = 0 on ∂Ω, σ > 0 on Ωo,

where Ωo is the interior of Ω. Then by reflecting this solution about boundaries, one
can extend σ on whole R2, and the resulting function is doubly periodic with period
{(2a, 0), (0, 2b)}.

Observing the symmetries of σ, one can deduce that R2 = id, ai = 0 (i = 1, 2), and

R1 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

where θ = θ(a, b) is a real number. Moreover, one can show that θ is a non-constant continuous
function in (a, b). Hence there exists (a, b) such that θ = θ(a, b) ∈ 2πQ. For such (a, b), Rm

1 = id
for some integer m. This means that p is {(ma, 0), (0, b)}-periodic, which yields the example.

After Wente, a lot of results related Wente-type tori are obtained. See, for example, [Abr87,
Wal87, PS89].
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Glossary

1-form 微分 1-形式, 3

adapted frame 適合枠, 23
arc-length parameter 弧長径数, 11
area element 面積要素, 35
area functional 面積汎関数, 36
area 面積, 35

Cauchy-Riemann equations コーシー・リーマン
方程式, 16

Christoffel symbols クリストッフェル記号, 21
Codazzi equations コダッチ方程式, 27
column vector 列ベクトル, 1, 7
commutativity 可換性, 2
compatibility condition 適合条件, 13
conjugate 共役, 17
connection form 接続形式, 25
covariant derivative 共変微分, 27
curvature 曲率, 11

determinant 行列式, 1
differential 2-form 微分 2-形式, 3
differential form 微分形式, 3
differential one form 微分 1-形式, 3
differential 微分, 3
distance 距離, 1, 19
domain 領域, 1

eigenvalue 固有値, 7
Euclidean space ユークリッド空間, 1, 19
Euler-Lagrange equationオイラー・ラグランジュ

方程式, 36
exterior differential 外微分, 3

Frenet frame フルネ枠, 11

gauge transformation ゲージ変換, 24
Gauss frame ガウス枠, 21
Gauss-Weingarten formula ガウス・ワインガル

テンの公式, 21
Gaussian curvature ガウス曲率, 20
general linear group (GL(n,R)) 一般線形群, 7

harmonic function 調和関数, 16

holomorphic 正則（複素関数が）, 16

identity matrix 単位行列, 1
immersion はめ込み, 19
initial value problem 初期値問題, 5
inner product 内積, 1, 19
integrability condition 可積分条件, 13
isometry 等長写像，等長変換, 1
isometry 等長変換, 19

Kronecker’s delta symbol クロネッカーのデルタ
記号, 21

Laplacian ラプラシアン, 16
latitude 緯度, 2
linear function 1次関数, 6
linear ordinary differential equation 線形常微分

方程式, 6
longitude 経度, 2

map 写像, 1
matrix 行列, 1
mean curvature 平均曲率, 20, 35
mean value theorem 平均値の定理, 2
Mercator’s world map メルカトルの世界地図, 2
minimal surface 極小曲面, 36

norm ノルム, 1, 7, 19

ODE → ordinary differential equation, 5
ordinary differential equation 常微分方程式, 5
orientation preserving 向きを保つ, 1
origin 原点, 36
orthogonal group (O(n)) 直交群, 8
orthogonal matrix 直交行列, 1
outer product 外積, 19

parallel surface 平行曲面, 35
parametrization パラメータ表示, 2, 19
partial derivative 偏微分，偏導関数, 2
partial differential equation 偏微分方程式, 13
perpendicular 垂直, 36
plane 平面, 36
Poincaré lemma ポアンカレの補題, 4
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position vector 位置ベクトル, 36
principal curvatures 主曲率, 20

radius 半径, 36
regular curve 正則曲線, 11
regular matrix 正則行列, 7
row vector 行ベクトル, 1

simply connected 単連結, 4, 14
skew-symmeetric matrix 交代行列，歪対称行列,

8
solution 解, 5
space curve 空間曲線, 11
special linear group (SL(n,R)) 特殊線形群, 8
special orthogonal group (SO(n)) 特殊直交群, 8
sphere 球面, 2, 36
surface 曲面, 1

tori トーラス（複数形）, 38
torsion 捩率, 11
torus トーラス, 38
total differential 全微分, 3
transposition 転置, 1
triangle inequality 三角不等式, 7

unit normal vector 単位法ベクトル, 19
unknown function 未知関数, 5

variational method 変分法, 36
vector product ベクトル積, 19


