Introduction

This is a first half of two series of lectures, Advanced Topics in Geometry A1 and B1, in which the
fundamental theorem for surface theory and its applications are treated.

Throughout this lecture, object of our interest is “surfaces in Euclidean 3-space”. The goal is
to give an comprehensive proof of the fundamental theorem for surface theory ([UY17, Theorem
17.2, see also Appendi B.10]). To accomplish the proof, mathematical tools including the theory
of ordinary differential equations and the Frobenius intebrability theorem are expalined.

An aim of the lectures for students is to observe mathematical view around undergraduate
calculus and linear algebra.
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1 Overview

FEuclidean space

In this lecture, we denote by R™ the n-dimensional Fuclidean space with canonical inner product

(0

Mo Y1
(1.1) <$7y>:f'3Ty=$1y1+"'+$nyn for x= S, Y= : e R,

Tn Yn

here, we regard an element of R™ as a column vector, and ()7 denotes the matrix transposition.
Set!

(1.2) Izl :==V(z,2),  d@y):=[y-=] (z,yecR")

which is called the norm of @, and the distance of x and y, respectively.
A map f: R"™ — R"” is called isometry if

(1.3) d(f(z), f(y)) = d(z,y)
holds for any & and y € R".

Definition 1.1. An n x n real matrix R is said to be an orthogonal matriz if RT R = id holds,
where id is the n x n identity matriz.

The determinant of an orthogonal matrix R is 1 or —1. We denote by O(n) the set of n x n
orthogonal matrices, and

(1.4) SO(n) :={R € 0O(n); det R = 1}.
Fact 1.2. A map f: R™ = R" is isometry if and only if it is written in the form
(1.5) f(x)=Rzx+a (ReO(n),acRk").

If R in (1.5) is a member of SO(n), f is said to be orientation preserving.

The Fundamental Theorem for surface Theory

Our object in this lecture is surfaces in Euclidean 3-space. The simplest question is:
Question 1.3. What quantity determines a shape of surface?

It is necessary for mathematical formulation of this question to express the surface. Among
several ways to explain surfaces, we regard a surface as a parametrization, that is, a map 2

F:U 3 (u,v) = fu,v) € R3,

where U is a domain 2of R2.

11. April, 2025. Revised: 25. April, 2025 (Ver. 2)
1« A := B” means that “A is defined by B”.
2Unless confusion, points in the source domain are represented by row vectors.
3A domain is a connected open subset U C R™.
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Example 1.4.  « Set U := (-7, m) x (=%, %) and

COS U COS ¥
f:U3 (u,v) = f(u,v) = | sinucosv | € R?
sin v

is a parametrization of the unit sphere in R®. The parameter u (resp. v) represents the
longitude (resp. the latitude) of the point of the sphere.

e Set V:=(—m,7) xR and

cos ssecht
g:V 3 (s,t)—g(s,t)= | sinssecht | € R
tanht

Then g parametrizes the unit sphere, and the st-plane is regarded as the Mercator’s world
map.

Then the following “fundamental theorem” is one of the answer:
Theorem (The Fundamental Theorem for surface theory). Let

o U CR? be a simply connected domain,

o I be a positive definite symmetric quadratic form on U

e II be a symmetric quadratic form on U.

Assume I and II satisfy the Gauss and Codazzi equations. Then there exists a surface f: U — R3
whose first and second fundamental forms are I and II, respectively.
Moreover, such an f is unique up to orientation preserving isometry of R>.

The undefined words in the statement, and mathematical meanings of the theorem will be
explained through the lecture, and our goal is to prove this theorem.

Commutativity of partial derivatives

One of the most important fact in undergraduate calculus is the following “commutativity of partial
derivatives”.

Theorem 1.5. Let f: U — R be a function defined on a domain U of R? and fix a point
p = (u,v) € U. If the second derivative 02 f /(0zdy) = fy. and 8 f /(Oydx) = fu, are both defined
on U and continuous at p, then
0 f
J0xdy

2
1) = 5o @)

holds.
Proof. Take (h, k) € R? satisfying (u + th,v + sk) € U for all ¢, s € [0,1]. Let
g(hak) = f(u+h,v+k) - f(u,erk) - f(u+h,7}) +f(u,v).

Since the partial derivative f, exists on U, the function of one variable Fi(t) := g(th, k) is differ-
entiable on 0 < ¢ £ 1. Then the mean value theorem implies that there exists 6; = 61 (h, k) with
0 < 61 < 1 such that

g(h,k) = Fy(1) = Fy(1) = Fy(0) = F{(61) = (fu(u+61h,0+ k) — fulu+61h,0))h = Fy(1)h,
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where Fy(s) := fy(u + 01h, v+ sk) — fo(u+ 61h,v) (0 = s £ 1). Since (fy), exists on U, Fy is
differentiable on 0 £ s < 1. So, applying mean value theorem again, there exists 6o = 05(h, k) €
(0,1) such that

Summing up, there exists 61, 83 € (0,1) depending on h and k such that

(1.6) g(h, k) = foy(u+61h,v + 02k)Rk.

On the other hand, changing roles of h and k, we know that there exist ¢1, w2 € (0,1) such that
(1.7) g(h, k) = fye(u+ @1h, v+ pok)hk.

Then
fa:u(u + thav + 92k) = fym(u + 801]7‘7'0 + (PQk)

whenever hk # 0. Here, taking limit (h, k) — (0,0), we have
(u+ 01h, v+ 02k) — (u,v), (u+ p1h,v + p2k) = (u,v)

because 0;, ¢; € (0,1) for j = 1,2. Thus, by continuity of f,, and f,,, we have fu,(u,v) =
fya(u, v). a

Definition 1.6. A function f defined on a domain U C R? is said to be
(1) of class CV if it is continuous on U,
(2) of class C if there exists a partial derivative f, and fyon U, and both of them are continuous,

(3) of class C™ (r = 2,3,...) if it is of class C"~! and all of the (r — 1)-st partial differentials are
of class C', and

(4) of class C* if it is of class C" for arbitrary non-negative integer r.

Using these terms, we have

Corollary 1.7. If a function f: U — R defined on a domain U of R? is of class C?, then foy = fyz
holds on U.

In this lecture, functions are assumed to be of class C*°. So partial differentials are always
commutative.
Inverse of the commutativity—Poincaré lemma

A differential 1-form, or a 1-form defined on a domain U C R? is the form
a = a(z,y)dz + b(z,y) dy

where a and b are C'*°-functions defined on U. The total differential, or simply the differential, of
C*>-function f defined as

df = fode + f, dy

is a typical example of differential forms.
A differential 2-form is a form
w=c(z,y)dx ANdy

where ¢ is a C*°-function. The exterior differential da
da =d(adz +bdy) = (by — ay) dz Ady

of 1-form a = adx + bdy is a typical example.
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Lemma 1.8. Let f be a C*-function defined on a domain U C R%. Then d(df) = 0 holds.
Proof. d(df):d(fwdx+fydy):(fya:_fa:y)dx/\dyzo- O

Theorem 1.9 (Poincaré lemma). Let U be a simply connected domain, and « a differential 1-
form defined on U. If da = 0, then there exists a C°° function f defined on U such that df = a.

The definition, fundamental properties of simple connectedness will be given in Section 3.
Ezercises
1-1 Let f(x,y) = e*® cosy, where a is a constant. Find a function g(z,y) satisfying
9o =—fy.  gy=1Js  9(0,0)=0.
1-2 Let U =R?\{(t,0); t <0} and consider a 1-form

—y z
dx
r? +y? Ty y?

a=a(z,y)dx + b(z,y) dy := dy.

on U. Take a point P = (rcosf,rsinf) € U (r > 1,0 < 6 < 7), and two curves

cr(t) := (z1(t),y1(t)) = (cost,sint) (05t£0),
ca(s) := (z2(s),y2(s)) = (scosb, ssin) (1<s<r),

whose union gives a curve joining (1,0) and P. Compute the line integral

/Cluc2 . /Oo (a(m(t), y1 (1)) % dt + b(z1 (1), y1 () % dt)

dx

+ /; <a(l'2(5)vy2(5)) de ds + b(z2(s),y2(s)) @ ds) .

s ds
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2 Ordinary Differential Equations

The fundamental theorem for ordinary differential equations.
Consider a function
(2.1) f:IxU>s(tx)— f(t,x) eR™

of class C', where I C R is an interval and U C R™ is a domain in the Euclidean space R™. For
any fixed tg € I and xy € U, the condition

(2.2) %w(t) = f(t. (1)), x(ty) = xo

of an R™-valued function ¢ — «(t) is called the initial value problem of ordinary differential
equation, ODE for short, for unknown function @(¢). For a subinterval J of I with t; € I, a
function @: J — U satisfying (2.2) is called a solution of the initial value problem.

Fact 2.1 (The existence theorem for ODE’s). Let f: I x U — R™ be a C'-function as in (2.1).
Then, for any o € U and ty € I, there exists a positive number ¢ and a C-function x: I N (tg —
g, to +¢) = U satisfying (2.2).

Take two solutions x;: J; = U (j = 1,2) of (2.2) defined on subintervals J; C I containing .
Then the function x5 is said to be an extension of @y if J; C Jy and x5(t) = x1(¢) for all ¢t € J;.
A solution « of (2.2) is said to be mazimal if there are no non-trivial extension of it.

Fact 2.2 (The uniqueness for ODE’s). The mazimal solution of (2.2) is unique.

Fact 2.3 (Smoothness of the solutions). If f: I x U — R™ is of class C" (r = 1,...,00), the
solution of (2.2) is of class C"™*1. Here, oo + 1 = 00, as a convention.

Let V C R* be another domain of R¥ and consider a C*°-function
(2.3) h:IxUxV >3 (t,z;a) = h(t,z; ) € R™.

For fixed ty € I, we denote by x(t; xo, o) the (unique, maximal) solution of (2.2) for f(t,z) =
h(t,x; ). Then

Fact 2.4. The map (t,xo; @) — x(t; o, ) is of class C.
Example 2.5. (1) Let m =1, I =R, U = R and f(¢t,z) = Az, where X is a constant. Then
x(t) = zg exp(At) defined on R is the maximal solution to

d
%x(t) = f(t,x(t)) = Ax(t), x(0) = wo.

(2) Let m =2, I =R, U =R? and f(t; (z,y)) = (y, —w?x), where w is a constant. Then

z(t)\ _ [ wocoswt+ Lsinwt
y(t))  \ —zowsinwt + yg coswt
is the unique solution of

a0 = () G =)

defined on R. This equation can be considered as a single equation

d? dx
Cnlt) = —Pa(t), w(0) =20, () =yo

of order 2.
25. April, 2025. Revised: 09. May, 2025)
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(3) Let m=1,I =R, U =R and f(t,z) = t(1+ 2?). Then x(t) = tan % defined on (—/7, \/7)
is the unique maximal solution of the initial value problem

dx
= (1 2 =0.
o t(1 4 x%), 2(0) =0

Linear Ordinary Differential Equations.

The ordinary differential equation (2.2) is said to be linear if the function (2.1) is a linear function
in x, that is, a linear differential equation is in a form

d

where A(t) and b(t) are m X m-matrix-valued and R™-valued functions in ¢, respectively.

For the sake of later use, we consider, in this lecture, the special form of linear differential
equation for matrix-valued unknown functions as follows: Let M,,(R) be the set of n x n-matrices
with real components, and take functions

2:1— M,(R), and B: I — M,(R),

where I C R is an interval. Identifying M, (R) with R”Q, we assume {2 and B are continuous
functions (with respect to the topology of R™ = M, (R)). Then we can consider the linear
ordinary differential equation for matrix-valued unknown X (¢) as

dX (t)
dt

(2.4) — X(OQW) +B(t),  X(ty) = X,

where X is given constant matrix.

Then, the fundamental theorem of linear ordinary equation states that the mazimal solution
of (2.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms.

Denote by M, (R) the set of n x n-matrices with real components, which can be identified the
vector space R™. In particular, the Euclidean norm of R™ induces a norm

(2.5) | X|g =1/tr(XTX) =

on M, (R). On the other hand, we let

(2.6) | X |m ::sup{Ti}T';'vER”\{O}}y

where | - | denotes the Euclidean norm of R”.
Lemma 2.6. (1) The map X — |X|m is a norm of M, (R).
(2) For X, Y € Mu(R), it holds that | XY |y < |X|u |Y a1

(3) Let A = \(X) be the mazimum eigenvalue of semi-positive definite symmetric matriz X7 X.

Then |X|x = VA holds.

4) (1/Vn)IX[e = [X|u = [ X]e.
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(5) The map |- |v: Mu(R) — R is continuous with respect to the Euclidean norm.

Proof. Since | Xv|/|v| is invariant under scalar multiplications to v, we have | X |y = sup{|Xv|; v €
S7=1} where S"~1 is the unit sphere in R”. Since S"~! 3 & — |Az| € R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (2.6) is well-
defined. It is easy to verify that | - [y satisfies the axiom of the norm*.

Since A := XTX is positive semi-definite, its eigenvalues \; (j = 1,...,n) are non-negative
real numbers. In particular, there exists an orthonormal basis [a;] of R™ satisfying Aa; = \ja;
(j=1,...,n). Let X be the maximum eigenvalue of A, and write v = via; + -+ + v,a,. Then it
holds that

(X0, Xv) = M7+ + 202 £\ (v,v),

where ( , ) is the Euclidean inner product of R™. The equality of this inequality holds if and only if v
is the A-eigenvector, proving (3). Noticing that the norm (2.5) is invariant under conjugations X
PTXP (P € O(n)), we obtain |X|g = v/A\1 +--- + A, by diagonalizing X7 X by an orthogonal
matrix P. Then we obtain (4). Hence two norms | - |g and | - |y induce the same topology as
M,,(R). In particular, we have (5). O

Preliminaries: Matriz-valued Functions.

Lemma 2.7. Let X andY be C*°-maps defined on a domain U C R™ into M, (R). Then

0 0X aYy
0 50X
0 0X
7X_1 — —X_liX_l
(3) 8Uj 8uj ’

where X is the cofactor matriz of X, and we assume in (3) that X is a regular matriz.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibniz rule,
Denoting ' = 9/0u,;,
O=(@1d)=(X'X)=(X"HX' + (X VX

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1,...,&,). Since the determinant is
multi-linear form for n-tuple of column vectors, it holds that

(det X)' = det(x}, 2, ..., x,) +det(z1,xh, ..., x,) + - +det(x1, Ta,...,2,).
Then by cofactor expansion of the right-hand side, we obtain (2). O

Proposition 2.8. Assume two C™ matriz-valued functions X (t) and £2(t) satisfy

(2.7) %Et) = X (t)02(¢), X (to) = Xo.
Then
(2.8) det X (t) = (det Xo) exp /1t tr Q2(7) dr

holds. In particular, if Xo € GL(n,R),> then X (t) € GL(n,R) for all t.

4 X |nm > 0 whenever X # O, |aX|m = |a] | X |Mm, and the triangle inequality | X 4+ Y|y < | XM + Y-
5GL(n,R) = {A € M,,(R); det A # 0}: the general linear group.
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Proof. By (2) of Lemma 2.7, we have

%det X(t) = tr (X(t)cu;ft)) = (X()X()2())

= tr(det X (£)£2(t)) = det X (¢) tr 22(t).

Here, we used the relation XX = XX = (det X)id. Hence 4 (p(t)~'det X(t)) = 0, where p(¢) is
the right-hand side of (2.8). O

Corollary 2.9. If Q(t) in (2.7) satisfies tr 2(t) = 0, then det X (t) is constant. In particular, if
Xo € SL(n,R), X is a function valued in SL(n,R) ©.

Proposition 2.10. Assume £2(t) in (2.7) is skew-symmetric for allt, that is, 27 + (2 is identically
O. If Xo € O(n) (resp. Xo € SO(n))7, then X (t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 2.7,

d dx dx\ 7
—(xXTy="xT4+ x| =
dt( ) dt + ( dt )

=XOXT + XQTXT = x(2+01)XT = 0.
Hence X X7 is constant, that is, if X € O(n),
XX = X(t) X (to)" = Xo X =id.
If Xy € O(n), this proves the first case of the proposition. Since det A = £1 when A € O(n), the
second case follows by continuity of det X (¢). O

Preliminaries: Norms of Matriz- Valued functions.

Let I = [a,b] be a closed interval, and denote by C°(I, M, (R)) the set of continuous functions
X: I — M,(R). For any positive number &, we define

(2.9) |X || 1,k o= sup {e ™| X (t)|m; t €I}

for X € C°(I,M,,(R)). When k =0, || - ||1,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 2.11. The norm || - ||15 on C°(I,M,(R)) is complete.

Linear Ordinary Differential Equations.

We prove the fundamental theorem for linear ordinary differential equations.

Proposition 2.12. Let £2(t) be a C*-function valued in M, (R) defined on an interval I. Then
for each ty € I, there exists the unique matriz-valued C*-function X (t) = Xy, 1a(t) such that

dx (1)
dt
6SL(n,R) = {A € M, (R); det A = 1}; the special linear group.

"O(n) = {A € Mp(R); ATA = AAT = id}: the orthogonal group; SO(n) = {A € O(n); det A = 1}: the special
orthogonal group.

(2.10) = X(O)2@),  X(t) =id.
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Proof. Uniqueness: Assume X (¢) and Y (¢) satisfy (2.10). Then

v -x= [ 070 - Xy = [ 00 - xe)ame (=4

to t(]

holds. Take an arbitrary closed interval J C I. Then for an arbitrary ted,

Y (t) = X(t)m = (1))92(7) |y d7 ()| 192(7) [y d
t
- / T () = Xl et 120y dr| < 1Y —XHJ,ksgpmm | e
0 0
sup ; |12 e ekt
= 1Y = X SRR 1 ey X s |2
holds, and hence
N
MY () = X(Ohe £ TPy - x5
Thus, for an appropriate choice of k € R, it holds that
*HY X1k

that is, ||Y — X||sx = 0, proving Y (t) = X (¢) for t € J. Since J is arbitrary, ¥ = X holds on I.
Existence: Take a > to such that J := [tg,a] C I, and define a sequence {X;} of matrix-valued
functions defined on T satisfying X (¢) = id and

t

(2.11) Xjp1(t) =id+ X;(r)2(r)dr (§=0,1,2,...).
to
Then
t
[Xj1 () = X; @O = | [X5(7) = X1 (7) | 2(7) [ dr
to
okt)
|k:| SUPW\MHX - Xj-

and hence || X411 — Xj||sr < [|X; — Xj_1][sk, for an appropriate choice of k € R, that is, {X;}
is a Cauchy sequence with respect to || - || ;5. Thus, by completeness (Lemma 2.11), it converges
to some X € C°(J, M, (R)). By (2.11), the limit X satisfies
t
X(to) =id, X)) =id+ [ X(m)02(7)dr.
to
Applying the fundamental theorem of calculus, we can see that X satisfies X'(t) = X (¢)2(¢)
(' = d/dt). By the same argument for a < tg with J = [a,t], existence of the solution on I is
proven.
Finally, we shall prove that X is of class C*°. Since X'(t) = X (¢)£2(t), the derivative X’ of
X is continuous. Hence X is of class C', and so is X (¢)£2(¢). Thus we have that X’(¢) is of class
C!', and then X is of class C?. Iterating this argument, we can prove that X (¢) is of class C" for
arbitrary r. O

Corollary 2.13. Let 2(t) be a matriz-valued C*°-function defined on an interval I. Then for
each to € I and Xy € M, (R), there exists the unique matriz-valued C* -function Xy, x,(t) defined
on I such that

dX(t)

(2.12) —5 X)), X(to)=Xo (X(t):= Xy, x,())

In particular, X, x,(t) is of class C* in Xy and t.
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Proof. We rewrite X (t) in Proposition 2.12 as Y (¢) = Xy, ia(¢). Then the function
(2.13) X(t) := XoY (t) = XoXt,,a(t),

is desired one. Conversely, assume X (¢) satisfies the conclusion. Noticing Y (¢) is a regular matrix
for all ¢ because of Proposition 2.8,

satisfies

X Y
W _ d—Y‘l — Xy—ld—y—l =Xy ' -Xy-lypy-!t=0,
dt dt dt

that is, W is constant, and hence
W (t) = W(to) = X(to)Y (to) " = Xo.
So the uniqueness is obtained. The final part is obvious by the expression (2.13). O

Proposition 2.14. Let 2(t) and B(t) be matriz-valued C*-functions defined on I. Then for each
tg € I and Xy € M,,(R), there exists the unique matriz-valued C™-function defined on I satisfying

dX (t)

(2.14) =

= X(O)2() + B, X(to) = Xo.

Proof. Rewrite X in Proposition 2.12 as Y := X} jq. Then
t
(2.15) X(t) := (XO +/ B(T)Y (1) dT) Y (t)
to
satisfies (2.14). Conversely, if X satisfies (2.14), W := XY ~! satisfies
X' =WY+WY'=WY+WYR, XQ2+B=WY2+B,

and then we have W’ = BY ~1. Since W (t() = X,

W= Xo+ /t B(r)YY(r)dr.

to

Thus we obtain (2.15). O

Theorem 2.15. Let I and U be an interval and a domain in R™, respectively, and let 2(t, o) and
B(t, &) be matriz-valued C*-functions defined on I xU (o = (a1, ...,am)). Then for eachty € I,
a € U and Xog € M, (R), there exists the unique matriz-valued C™-function X (t) = X4y x,.a(t)
defined on I such that

dX (t)

(2.16) 7

= X(1)Q(t, ) + B(t,a),  X(to) = Xo.

Moreover,
I xIxM,(R)xUS> (t,t9, Xo, ) = Xy x,a(t) € M, (R)

is a C°°-map.



11 MTH.B405; Sect. 2

Proof. Let Q(t,&) := Q2(t + to, &) and B(t,&) = B(t + to, @), and let X (t) := X (t + to). Then
(2.16) is equivalent to

d);(t) = X(1)Q(t, &) + B(t,&), X(0) = Xo,

(2.17)

where & := (tg, 1, .., ). There exists the unique solution X (t) = )?07)(0,@(15) of (2.17) for
each & because of Proposition 2.14. So it is sufficient to show differentiability with respect to the
parameter &. We set Z = Z(t) the unique solution of

A ~ -9 OB
(2.18) - _ZQJFXaszJFaTZj’ Z(0) = 0.

Then it holds that Z = 8)?/80@». In particular, by the proof of Proposition 2.14, it holds that

X ([ <, 09(r,&) 0B(r,a)) .
Zaaj</0<X(T) Do, + 9o, >Y1(T)d7>Y(t).

Here, Y (t) is the unique matrix-valued C*°-function satisfying Y'(t) = Y (t)2(t, &), and Y (0) = id.

Hence X is a C*°-function in (¢, &). O

An Application: Fundamental Theorem for Space Curves.

A C*®-map v: I — R3 defined on an interval I C R into R3 is said to be a regular curve if
4 # 0 holds on I. For a regular curve 7(t), there exists a parameter change ¢t = t(s) such that
A(s) := ~(t(s)) satisfies |¥'(s)| = 1. Such a parameter s is called the arc-length parameter.
Let v(s) be a regular curve in R? parametrized by the arc-length satisfying 4" (s) # 0 for all s.

Then "(s)

(s

e(s) :==7'(s), n(s) i= ———=, b(s) :=e(s) x n(s)

17" (s)]
forms a positively oriented orthonormal basis {e,n, b} of R? for each s. Regarding each vector as
column vector, we have the matrix-valued function

(2.19) F(s) := (e(s),n(s),b(s)) € SO(3).
in s, which is called the Frenet frame associated to the curve . Under the situation above, we set
K(s):="()] >0,  7(s) == —(b(s).n(s)),

which are called the curvature and torsion, respectively, of «. Using these quantities, the Frenet
frame satisfies

0 —k O
d
(2.20) —}—:}"Q, =k 0 -7
ds 0
T 0

Proposition 2.16. The curvature and the torsion are invariant under the transformation x —
Az + b of R? (A € SO(3), b € R3). Conversely, two curves v1(s), v2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A € SO(3) and b € R3 such that
")/2 = A’)/l + b

Proof. Let k, T and F; be the curvature, torsion and the Frenet frame of v, respectively. Then
the Frenet frame of 75 = Ay; +b (A € SO(3), b € R3) is F» = AF;. Hence both F; and F; satisfy
(2.20), and then v; and 2 have common curvature and torsion.
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Conversely, assume ; and 5 have common curvature and torsion. Then the frenet frame Fi,
F> both satisfy (2.20). Let F be the unique solution of (2.20) with F(to) = id. Then by the
proof of Corollary 2.13, we have F;(t) = F;(to)F(t) (j = 1,2). In particular, since F; € SO(3),
Fo(t) = AF1(t) (A := Fa(to)Fi(to)~' € SO(3)). Comparing the first column of these, v4(s) =
A~} (t) holds. Integrating this, the conclusion follows. O

Theorem 2.17 (The fundamental theorem for space curves).

Let k(s) and 7(s) be C*°-functions defined on an interval I satisfying k(s) > 0 on I. Then there
exists a space curve y(s) parametrized by arc-length whose curvature and torsion are k and T,
respectively. Moreover, such a curve is unique up to transformation € — Ax +b (A € SO(3),

b e R3) of R3.

Proof. We have already shown the uniqueness in Proposition 2.16. We shall prove the existence:
Let £2(s) be as in (2.20), and F(s) the solution of (2.20) with F(sg) = id. Since 2 is skew-
symmetric, F(s) € SO(3) by Proposition 2.10. Denoting the column vectors of F by e, n, b, and
let

o) 5= [ elo)do

S0

Then F is the Frenet frame of v, and k, and 7 are the curvature and torsion of v, respectively. [

Ezxercises

2-1 Find the maximal solution of the initial value problem

d
—=all-a), () =a,
where a is a real number.

2-2 Let x = z(t) be the maximal solution of an initial value problem of differential equation

A%z . dx
W = —SsInwz, x(O) = 0, E(O) = 2.
dx T
e Sh hat — = 2cos —.
Show that i cos2

o Verify that x is defined on R, and compute lim;_, 4 2(t).

2-3 Find an explicit expression of a space curve y(s) parametrized by the arc-length s, whose
curvature k and torsion 7 satisfy

o
VAL +57)

R=T =
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3 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider an m-tuple of n x n-matrix valued
C*°-maps
(3.1) 2;: R™ > U — M,(R) (j=1,...,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

0X .
(3:2) @:Xﬂj (j=1,....m), X(Po) = Xo,
where Pg = (u},...,u') € U is a fixed point, X is an n x n-matrix valued unknown, and X, €
M, (R).

Proposition 3.1. If a C*®-map X: U — M,(R) defined on a domain U C R™ satisfies (3.2)
with Xo € GL(n,R), then X(P) € GL(n,R) for all P € U. In addition, if £2; (j =1,...,m) are
skew-symmetric and Xo € SO(n), then X (P) € SO(n) holds for all P € U.

Proof. Since U is connected, there exists a continuous path ~g: [0,1] — U such that v(0) = Py
and vo(1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Leel3]), there exists
a smooth path v: [0,1] — U joining Py and P approximating 0. Since X := X o satisfies (3.4)
with X (0) = X, Proposition 2.8 yields that det X (1) # 0 whenever det Xy # 0. Moreover, if £2;s
are skew-symmetric, so is §2,(t) in (3.4). Thus, by Proposition 2.10, we obtain the latter half of
the proposition. O

Proposition 3.2. If a matriz-valued C* function X: U — GL(n,R) satisfies (3.2), it holds that
002; 08

(3.3) ok~ Bur = % — 25

for each (4,k) with 1 < j <k <m.

Proof. Differentiating (3.2) by u*, we have

02X X 092; 992;
uFoul  Ou gur X@ X(8 k

+Qk9>

On the other hand, switching the roles of j and k, we get

02X 082
o QuP _X<3 R Qk)

Since X is of class C'°°, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X € GL(n,R), the conclusion follows. O

The equality (3.3) is called the integrability condition or compatibility condition of (3.2).
The chain rule yields the following:

Lemma 3.3. Let X: U — M,(R) be a C*-map satisfying (3.2). Then for each smooth path
~v: I — U defined on an interval I C R, X := X oy : I — M, (R) satisfies the ordinary differential
equation

(3.4) E(t) _ )A((t)Q»y(t) _Q,y(t) = Z 250 ’Y(t)%(t)

on I, where y(t) = (u!(t),...,u™(t)).
09. May, 2025. Revised: 16. May, 2025
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Lemma 3.4. Let 2;: U — M,(R) (j = 1,...,m) be C*-maps defined on a domain U C R™
which satisfy (3.3). Then for each smooth map

o: D3 (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) € U
defined on a domain D C R2, it holds that

o ow

. T T =

(3.5) T W+WT =0,

where
T 0w 0w~

(3.6) T::Zrzjft, W::Z(Zj—w (2; == 2;00).
j=1 j=1

Proof. By the chain rule, we have

or 092, OuF oud i ~ 9%ud

w = 2 out ow ot 22 guar

OW O~ 092; Ou® ow in: ~ 0%l

ot A ouk 9t dw 7 otow

J:k: J=1
_ o2, Oud OuF "L 9%
Z 3w ot 0w 2= orgw
Hence

or ow i": <arzj a(zk> ouF ou

ow ot ouk  oui ) dw ot
7,k=1

Ui ouk ou’

= 2 (8- 28) 5050
7,k=1

" Ou ~ OuF ~ Ou T Ul
- (ZQ&S> <Z ’“aw>_<z aw> (Z at)

j=1 k=1 k=1 j=1
=TW — WT.

Thus (3.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 3.5. Let £2;: U = M, (R) (j =1,...,m) be C*-functions defined on a simply connected
domain U C R™ satisfying (3.3). Then for each Py € U and Xy € M,,(R), there exists the unique
n X n-matriz valued function X : U — M, (R) satisfying (3.2). Moreover,

o if Xo € GL(n,R), X(P) € GL(n,R) holds on U,
o if Xo € SO(n) and 2; (j =1,...,m) are skew-symmetric matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 3.1. We show the existence of X: Take
a smooth path v: [0,1] — U joining Py and P. Then by Theorem 2.15, there exists a unique
C>-map X: [0,1] — M, (R) satisfying (3.4) with initial condition X (0) = Xj.

We shall show that the value X (1) does not depend on choice of paths joining Py and P. To
show this, choose another smooth path ¥ joining Py and P. Since U is simply connected, there
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exists a homotopy between 7 and 4, that is, there exists a continuous map oq: [0,1] x [0,1] 2
(t,w) — og(t,w) € U satistying

U()(t» 0) = V(t)a U()(tv 1) = ﬁ(t%

(3.7) o0(0,w) =Py, op(l,w) = P,

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Leel3]) again, there exists a smooth
map o: [0,1] x [0,1] — U satisfying the same boundary conditions as (3.7):

(3.8) o(t,0) =(t), o(t,1) =4(t),
' o(0,w) = P, o(l,w) =P.
We set T and W as in (3.6). For each fixed w € [0, 1], there exists X,,: [0,1] — M, (R) such that

dXuw
dt

Since T'(t,w) is smooth in ¢ and w, the map

(t) = XoW(t)T(t, w), Xw(0) = Xo.

X:[0,1] x [0,1] 3 (t,w) = Xo(t) € M, (R)
is a smooth map, because of smoothness in parameter « in Theorem 2.15. To show that X (1) =
X(1,0) does not depend on choice of paths, it is sufficient to show that
oX .

3.9 — =XW
(3.9) 50
holds on [0,1] x [0,1]. In fact, by (3.8), W(1,w) = 0 for all w € [0,1], and then (3.9) implies that
X (1,w) is constant.

We prove (3.9): By definition, it holds that

oxX y
E:XT7 X(O7’U]):XO

for each w € [0, 1]. Hence by (3.5),

(3.10)

00X X  PX 9

Ot ow ~ Otdw  dwdt @(XT)
_‘ZT+XZZ_Z§T+X<3¥+TW—WT)
:%T+X%/+%W—XWT
- 2w+ (5w

So, the function Y, (t) := 0X /0w — XW satisfies the ordinary differential equation

dY,
dt
for each w € [0,1]. Thus, by the uniqueness of the solution, Y;,(¢) = O holds on [0, 1] x [0, 1].
Hence we have (3.9).
Thus, X (1) depends only on the end point P of the path. Hence we can set X (P) := X (1) for
each P € U, and obtain a map X: U — M, (R). Finally we show that X is the desired solution.
The initial condition X (Pg) = Xj is obviously satisfied. On the other hand, if we set

(t) =Yu(t)T(t,w), Yu(0)=0

Z(0) == X(uty. . ud 6, u™),
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Z(6) satisfies the equation (3.4) for the path () := (ul,...,u’ +4,...,u™) with Z(0) = X(P).
Since (2, = (25,

0X dZ
5 )= G5 |_ = Z0)2,(P) = X(P);(P)

which completes the proof. O

Application: Poincaré’s lemma.

Theorem 3.6 (Poincaré’s lemma). If a differential 1-form
w = Zaj(ul, e ,Um) d'U/j
j=1

defined on a simply connected domain U C R™ is closed, that is, dw = 0 holds, then there exists a
C*®-function f on U such that df = w. Such a function f is unique up to additive constants.

Proof. Since

Jda;  Oa; . .
dw = I ) dut A di,
Z (8ul ou’ )
1<J
the assumption is equivalent to
OJaj  Oay

- Sh=0  (1Zi<jsm).

(3.11)

Consider a system of linear partial differential equations with unknown &, a 1 x 1-matrix valued
function (i.e. a real-valued function), as

0
E.zfaj (Gj=1,...,m), E(up, ..., upr) = 1.

(3.12) 5

Then it satisfies (3.3) because of (3.11). Hence by Theorem 3.5, there exists a smooth function
E(ut, ..., u™) satisfying (3.12). In particular, Proposition 2.8 yields ¢ = det{ never vanishes.
Hence £(ug,...,ul) = 1 > 0 means that £ > 0 holds on U. Letting f := log&, we have the
function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g satisfy df = dg = w, it holds that
d(f — g) = 0. Hence by connectivity of U, f — g must be constant. O

Application: Conjugation of Harmonic functions. In this paragraph, we identify R? with
the complex plane C. It is well-known that a smooth function

(3.13) f:U3u+iv— &(u,v) +in(u,v) € C (i=+V-1)

defined on a domain U C C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

o _on 05 _ Oy
(3.14) ou  ov’ v Ou’

Definition 3.7. A function f: U — R defined on a domain U C R? is said to be harmonic if it
satisfies

Af = fuu + f’uv =0.
The operator A is called the Laplacian.
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Proposition 3.8. If function f in (3.13) is holomorphic, {(u,v) and n(u,v) are harmonic func-
tions.

Proof. By (3.14), we have

guu = (§u>u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = —Quv-
Hence A¢ = 0. Similarly,

Nuu = (_Ev)u = _g'uu = _guv = _(gu)v = _(nv)v = —Tw-
Thus An = 0. O

Theorem 3.9. Let U C C = R? be a simply connected domain and &(u,v) a C*-function harmonic
on U® Then there exists a C*° harmonic function n on U such that &(u,v)+in(u,v) is holomorphic
on U.

Proof. Let o := —&, du + £, dv. Then by the assumption,
do = (Epp + Euu) du Adv =0

holds, that is, a is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 1.9), there exists a function n such that dn = n, du + n, dv = a. Such a function 7
satisfies (3.14) for given . Hence £ + in is holomorphic in v + iv. O

Example 3.10. A function {(u,v) = e"cosv is harmonic. Set
a:=—&du+ &, dv=e"sinvdu+ e cosv dv.
Then n(u,v) = e* sinwv satisfies dn = a.. Hence
£+in=e"(cosv +isinv) ="t
is holomorphic in u + iv.

Definition 3.11. The harmonic function 7 in Theorem 3.9 is called the conjugate harmonic func-
tion of &.

8The theorem holds under the assumption of C2-differentiability.
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Ezxercises

3-1

3-2

Let
G(u0) = s, Elu,v) == logVu? + 02

u? 4 02’

be functions defined on non-simply connected domain U := R? \ {(0,0)}.

(1) Show that both & and & are harmonic on U.
(2) Verify that there exists a conjugate harmonic function 7; of & on U.

(3) Prove that there exists no conjugate harmonic function 79 of & on U.

Consider a linear system of partial differential equationcs for 3 x 3-matrix valued unknown
X on a domain U C R? as

0 —a —hi 0 —B —h;
‘%X = X0, ‘%X = X4, R:=|a 0 -k, A=[B8 0 -n3]|],
v Y hi A 0 hy h3 0

where (u,v) are the canonical coordinate system of R?, and «, 8 and h} (i,j = 1,2) are
smooth functions defined on U. Write down the integrability conditions in terms of «, 8 and
h.

J
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4 A review of surface theory

In this section, we review the classical surface theory in the Euclidean 3-space. The textbook
[UY17] is one of the fundamental references of this material.

4.1 Preliminaries

Euclidean space Let R? be the Euclidean 3-space, that is, the 3-dimensional affine space R?

endowed with the Euclidean inner product “-”, where®
x! Y
(4.1) x-y:=xly=axlyt + 22y + 233, where = [22], y=|v?| eR%
3 3
T Y

The Euclidean norm | | and the Euclidean distance d( , ) is defined as

42)  Jel=veoz= /(@) + (@22 + (23?2, dzy)=ly-2z (z,ycR’).

A map f: R® — R? is called an isometry if it preserves the distance function d: d(f(z), f(y)) =
d(z,y) (z, y € R).

Fact 4.1. A map f: R3 = R3 is an isometry if and only if f is in a form
(4.3) flx)=Ax+b (A€ O(3),becR?,
where O(3) is the set of 3 x 3 orthogonal matrices.

An isometry in (4.3) is said to be orientation preserving if A € SO(3), that is, A is an orthogonal
matrix with det A = 1.
The outer product or vector product © x y of x, y € R? is defined by

(4.4) det(x,y,2) = (x X y) - 2.

Immersed surfaces Let U C R? be a domain of the uv-plane R2. A C*®-map p: U — R3 is
called an immersion or a parametrization of a reqular surface if

(4.5) Pu (U, v) = g—p(u,v), and  py(u,v) == ?(u,v) are linearly independent
u v

at each point (u,v) € U. The unit normal vector field to an immersion p: U — R? is a C*°-map
v: U — R? satisfying

(46) V'pu:V'p'u:Oa |V‘:1
for each point on U.
The first fundamental form ds® is defined by
(4.7) ds*:=dp-dp = Edu®+ 2F dudv + G dv?,
(E = Pu * Pu> F:= Pu " Pv = Pv * Pu, G:= Dov - pv)a
where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).

The three functions E, F' and G defined on U are called the coefficients of the first fundamental
form.

16. May, 2025. Revisyed: 23. May, 2025
9 According to a traditional manner, the indices of coordinate functions are written as superscripts.
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Similarly, taking account of the identity

Vu'pv:(V'pv)u_y'pvuzo_y'pvu:_V'puv:l/v'pu7

we define the second fundamental form as

(4.8) II := —dv -dp = Ldu® + 2M dudv + N dv?,
(L = —Pu- ViuM = —Pu Vv = —Dv- Vu7N = —DPov - Vv)~

The symmetric matrices

~ E F A ~ L M 7
I = (F G) - (p;:]j‘> (puap’u)7 II = (M N) - — (pZTj’> (Z/Unyv)

are called the first and second fundamental matrices, respectively.
By the Cauchy-Schwarz inequality, it holds that

EG—F2 = |pu|2|pv|2 - (pu 'p'u)2 > 07

and then the first fundamental matrix I is a regular matrix. The area element of the surface is
defined as

(4.9) dA =V EG — F?dudv.

In fact, the area of a part of surface corresponding to a relatively compact domain 2 C U is

computed as
A($2) = //7dA://7\/EG—F2dudv.
9] 2

Since T is regular, the matrix

~ Al Al
4.10 A:—11[I—< ! 2),
0 FHE

called the Weingarten matriz, is defined. It is known that the eigenvalues A\; and Ay of A are real
numbers, and called the principal curvatures. The Gaussian curvature K and the mean curvature
H are defined as

det IT

(411) K = )\1)\2 =det A= =,
det I

1 1

4.2 Gauss frames

To simplify computations, and for a future generalization for higher dimensional case, we switch
the notation here to the “index” style. Write the coordinate system of U C R? by (u!, u?) instead
of (u,v), and denote

of of

f,lzw7 f,2=@’

that is, the subscript number following a comma means the partial derivative with respect to the
corresponding variable. Using these notations, the first fundamental form is expressed as

2
(4.12) ds* =dp-dp= ") gijdu’ du’, (9ij =D Pj)-

ij=1
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Similarly, the second fundamental form is written as

2
(4.13) II=—dp-dv="Y hijdu'du’,  (hij:=—p;-v;=—p;j Vi=Dpij- V).

ij=1

Since the first fundamental matrix I = (9ij)i,j=1,2 has positive determinant, its inverse matrix

exists. We denote the component of the inverse by I ! = (¢/), using superscripts instead of
subscripts. By definition, it holds that

2 .
4.14 V=g and Y g¥gy =0 =
(4.14) g g — 99k =0 {O (otherwise),
where 0 stands for Kronecker’s delta symbol. Using these, the Weingarten matrix A as in (4.10)
and the Gaussian curvature K in (4.11) are expressed as

det(hij)

2
— (A i = *hyj - =
(4.15) A=A, A ;g hgj, K =detA T

Since p is an immersion, {p(u',u?),p2(u',u?),v(u',u?)} are linearly independent for each

point (u',u?) € U. Hence we obtain a smooth map
(4.16) F: U3 (uh,v?) = (pa(u',u?),pa(ut,v?), v(u',uv?)) € GL(3,R),

where GL(3,R) is the set of 3 x 3 regular matrices with real components. The map F is called the
Gauss frame of the surface p.

Theorem 4.2. The Gauss frame F satisfies

1 1 1
0F A Ry .
hij  haj 0
where hi;’s are the coefficients of the second fundamental form, A; ’s are the components of the
Weingarten matriz, and

2
1 .
(4.18) rf = 3 ngl(gim‘ + 913 — Gig 1) (i,7,k =1,2)
1=1
The functions I 1’; in (4.18) are called the Christoffel symbols, and the equation (4.17) is called
the Gauss-Weingarten formula. By decomposing F into columns, the Gauss-Weingarten formula
is restated as

2
(4.19) Dij = (Z Filjp,l> + hizv,
=1
2
(4.20) vy=—> Alp,.
=1

The equality (4.19) and (4.20) are called the Gauss formula and Weingarten formula, respectively.

Proof of Theorem 4.2. Since {p.1,p.a,v} is a basis of R at each point (u',u?) € U, the second
derivative p;; is expressed as a linear combination of {p1,p2,v}:

2
(4.21) paj = Ajpa+ A3p2 +nijyv = <Z Aﬁﬂ),z) + i,
=1
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where Aﬁj and 7;; are smooth functions in (u!,u?). Since v is perpendicular to p, (4.13) implies

Nij = P,ij -V = hij.

On the other hand, taking inner product with p j, we have

2 2
(4.22) Dyij "Dk = Z Api-pr = Zglk/llij~
=1 =1

Here, by the Leibniz rule, the left-hand side is computed as

Pyij Pk = Di Dk)j—DPi DPkj=Yikj — D D)k + Dk D,
= Gik,j — Gijk + Dk D) i — Diij - Dok = Gikj — Gije + Gjk,i — Dij - P,k

and thus, p;j -pr = %(gik,j + 9rji — 9ij,k)- Then (4.22) turns to be

2

1

i(gik,j + Gkji — Gij k) = Dij - Dk = Zglk/léj'
1=1

Multiplying ¢** on the both sides of the equality above, and summing up it over k£ = 1 and 2, we
have

2 2 2 2
ZgSk(gik,j + Grji = Gijk) = Z ZQSkglkAﬁj = Z ZQSkgklAi‘j = Z 5L = A3
k=1 =1

k=11=1 =1 s=1

N |

This implies that Aéj coincides with the Christoffel symbol (4.18). Summing up, the Gauss formula
(4.19) is proven.
Next, we prove the Weingarten formula: Since v - v = 1, v; is perpendicular to v. Hence we

can write )
vi=Y B,

=1

and then by (4.21),
2 2
~hij=pi-v;=Y Blpi-pi=> guB}.
=1 =1

So,

2 2 2 2
RN TIED 3 SRR SYI
=1 s=1

=1 s=1
proving (4.20). O

For later use, we prepare the following formulas on the Christoffel symbols:

Proposition 4.3. The Christoffel symbol in (4.18) satisfies

k _ ik
(4.23) rk=rk
2
(4.24) Gij .k = Z(gljpilk + gilrlij)v
=1
9g

2
(4.25) St 20 T}, (¢ :=det I = grigas — gia),
=1

where the indices i, j and k run over 1 and 2.
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Proof. Since

=I\p1+ I p2+hyy and pji=TI}p1+ips+ hjv,

(4.23) follows.
The second formula (4.24) is obtained as

Gij k = (pz' 'Pj) =Pk "Dt DPiDjk

2 2
(Z Oh(pi-pg) + hae(v - P,g)) + (ZF};@(P@ )+ hi(p,i - V))
=1

=1

Mw

(gl]Flk + ngij)

1

Finally, differentiating ¢ = det T ,

dg =97 2
B = B ~ ) L o
Bl tr <I 8ui> = (det I)tr (I I,Z) g E 9" Gimi

l,m=1

2

=g Z g ngFlz+ng zm = Zél‘l—‘lz—’_ Z 5;71]_‘18771

l,m,s=1 l,s=1 m,s=1
2 2
PSS o BE ot
=1 m=1
where I = (det 1)1 ! is the cofactor matrix of 1. Thus we have (4.25). O

4.3 Orthonormal frames

The Gauss and Weingarten formulas (Theorem 4.2) are the fundamental equations which express
how the fundamental forms determine shape of surfaces. In this section, another formulation of
Gauss-Weingarten formulas using orthonormal frames is given. In this subsection, we write the
coordinate system of R? by (u,v), again.

Adapted frames

Let p: U — R? be an immersion of a domain U C R? into the Euclidean 3-space, and take the
unit normal vector field v: U — R3 of p. For simplicity, we assume that v is compatible to the
canonical orientation of U, that is, det F = det(py, py,v) > 0, where F is the Gauss frame.

Definition 4.4. A C*-map £ = (e, ez, e3) : U — SO(3) is called an adapted (orthonormal)

frame of the surface p: U — R? if e3 coincides with the unit normal vector field v.

Example 4.5. Let p: R? D U > (u,v) — p(u,v) € R? be an immersion and let v be the unit
normal vector field of p which is compatible to the orientation of U. We let

1 1
0 0
e; = s e, .= Ep, — Fpy),
LT VEY 2= JEVEG = e )
where E, F, G are the coefficients of the first fundamental form as in (4.7). Since v := €J is

perpendicular to both p, and p,, % := (€Y, €3, €9) is an adapted frame of p. Remark that {e?,e9}
is an orthonormal frame of the orthogonal complement of v (that is, the tangent plane) obtained
by applying the Gram-Schmidt orthogonalization to (p,py)-
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Gauge transformations

An adapted frame has an ambiguity of a rotation of the frame (e, es) of the tangent plane. In
fact, for an arbitrary function ¢: U — R,

cos¢p —sing 0O
(4.26) £ =E&R, R:=R4=|sin¢g cos¢p 0
0 0 1

is another adapted frame. Conversely, we have the following:

Lemma 4.6. Let & and & be adapted frames of the surface p: U — R3, where U is a simply
connected domain. Then there exists a function ¢: U — R satisfying (4.26).

Proof. Since € and € are valued in SO(3) with common third columns, an SO(3)-valued function
R := £7'€ is expressed as

a —b 0
R=[b a 0 _(%0 (1)) (RO—(Z _2>:U%SO(2)>,
0 0 1
where a and b are C°°-functions defined on U. Fix a point (ug,vy) € U. Since Ry € SO(2),
a’® + b2 = 1, and then there exists an angle ¢ such that

(427) CL(U(), ’Uo) = COS d)o, b(uo, ’Uo) = sin ¢0.
Consider a differential 1-form
w:= —bda+ adb= (—ba, + ab,) du + (—ba, + ab,) dv.

Then
dw = ((—bav + aby)y — (—bay, + abu)v) du A dv = 2(ayb, — byay,) du A dv.

On the other hand, differentiating a® + b> = 1, it holds that
0 =ada+ bdb = (aay + bb,)du + (aa, + bb,)dv, that is, aa, = —bb,, aa, = —bb,.
Hence

adw = 2(aayb, — byaa,) du A dv = 2(—bb, b, + byaa,) du A dv = 0,
bdw = 2(a,bb, — bbyay,) du A dv = 2(—ayaa, + aaya,)du A dv =0,

which implies that dw = 0 because (a,b) # (0,0). Then by the Poincaré lemma (Theorem 1.9),
there exists the unique function ¢: U — R such that

(4.28) d¢ = w = —bda + adb, @ (ug, vo) = ¢o.
Set @ := cos ¢ and b := sin ¢. Then by (4.28), both Ry and

Ro = (cos¢ —singb)

sin ¢ cos ¢

satisfies the same systems of differential equations

_ 0 _¢u _ 0 _d)v
Xu_X(¢u O), Xq,_X<¢U O)

with the same initial condition. Hence Ry = RO, which is the conclusion. O

A transformation of adapted frames as in Lemma 4.6 is called a gauge transformation.
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Gauss-Weingarten formulas

Let £ = (ej, €3, €3) be an adapted frame of a surface p: U — R3. Since e; and e, are perpendicular
to v, there exists a matrix

~ 1 1 ~
(4.29) I = (?% zé) such that (Pu,pv) = (€1,€2) 1.

On the other hand, since e3 - e3 = 1, the derivatives of e3 are perpendicular to ez. Then there
exists a matrix II such that

~ 1 1 ~
(4.30) i = (Z; Z;) such that  ((€3)u. (€3)s) = —(e1, e2) 1.
1 2

Lemma 4.7. The Gaussian curvature K satisfy

K det f{
det [

Proof. The first and second fundamental matrices are

T = (28) o) = 17 (5 ) ervea) T = (1)1,

2

7 Py, i (el . Ty F

U:-(pg;) (Va,v) = I <eT> (e1,ex) IT = (IT)1T.
2

Hence we have the conclusion by (4.11). O

Proposition 4.8. There exist functions «, 3 defined on U such that

0 —a -kl 0 -8 —hl
(4.31)  E,=E0R, E,=EA Q:=|a 0 -R)|, A=|B8 0 -h
hloR2 0 KL R0

Proof. Since € is SO(3)-valued, 2 := £71&, and A := £71E, are skew-symmetric matrices. The
third columns of {2 and A are nothing but the definition of the matrix II. O

Definition 4.9. The differential form
wei=adu+ Bdv
is called the connection form with respect to the adapted frame.

Lemma 4.10. The connection forms p and p of the adapted frames € and & as in Lemma 4.6
satisfy

o= p+do.
Proof. Let 0= g—lgNM and A = g—lgj}. Then

Q=EYEWR+ER,) =E (ENR+ER,) =E 'E(R'QR+R'R,) = R"'QR+ R 'R,

and A = R~'AR + R~'R, hold. Then the conclusion follows. O
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Ezxercises

4-1 Assume the first and second fundamental forms of the surface p(u', u?) are given in the form

2
ds® = €* ((du')” + (du?)?), I =Y hydu'du,
i,j=1

where ¢ is a smooth function in (u!,u?).

(1) Compute the matrices £2; (j = 1,2) in (4.17).

(2) Set (u,v) = (ut,u?), e; == € 7p,, €z := e 7p,2, and e3 = v, where v is the unit
normal vector field. Compute the matrices {2 and A in (4.31) for the orthonormal frame
5 = (ela €y, 63)'

4-2 Assume the first and second fundamental forms of the surface p(u', u?) are given in the form
ds* = (du)? + 2 cos 0 du' du® + (du?)?, IT = 2sin 0 du' du?,
1

where 6 is a smooth function in (u!,u?).

(1) Compute the matrices £2; (j = 1,2) in (4.17).
(2) Find an adapted frame, and compute the matrices 2 and A in (4.31).
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5 The Gauss and Codazzi equations

5.1 Gauss and Codazzi equations

The Gauss-Weingarten formulas (Theorem 4.2) can be considered as a system of partial differential
equations with unknown F, whose coefficient matrices are 2; and (2.

Remark 5.1. The coefficient matrices 27 and (25 in the Gauss-Weingarten formula are expressed
in terms of the coefficients of the first and second fundamental forms. In fact, explicit formula for
components of {2; in terms of (g;;) and (h;;) are found in (4.15) and (4.18).

The following proposition is a direct conclusion of Proposition 3.2 and Theorem 4.2:

Proposition 5.2. Let p: U — R? be a parametrized surface defined on a domain U of u'u?-plane,
and let (g;j) and (hi;) be the coefficients of the first and second fundamental forms. Then the
matrices {1 and (22 in (4.17) satisfy

oy 082
5.1 — = ——= — N+ 22 =0
(5-1) ou?  Oul 1% fada

In this section, we show that nine equalities (5.1) are reduced to three equalities, as follows:

Theorem 5.3 (Gauss and Codazzi equations). The integrability condition (5.1) is equivalent to
the following three equalities:

(5.2) hir,2 = ho11 = Z <F2j1h1j - Fljlh2j>
J
(5.3) hi22 — hoo 1 = Z (szzhlj - Fljzh2j>
J
1
(5.4) Kye2 = §(h11h22 - h12h21)(= K)7

where g := det(gi;) = g11922 — 912921, and

1
(5.5) Kys2 := —Ryo,

g

1 s 7 s 1
(5.6) Rjp = 5(9116,2]‘ — g1j.2k + 92j,1k — G2k,15) — Zgis(Fkgplj =I5 1s;)

+ ngkl(E£2Ffj - Fllspzsj)'

l,s

The equalities (5.2) and (5.3) are called the Codazzi equations , and (5.4) is called the Gauss
equation.
Remark 5.4. Let

hij;k = hij,k — Z (Filkhlj — F]ijhil) .
l
Then ‘ ‘
VI = hijpdu’ ® du? @ du®
i3,k

does not depend on the coordinate system, which is called the covariant derivative of the second

fundamental form. The Codazzi equations is equivalent to h;j.; = Ak, that is, symmetricity of
VII.

23. May, 2025. Revised: 30. May, 2024
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Remark 5.5. The quantity Ky in (5.5) is determined only by the first fundamental form, and
one can show that it is invariant under coordinate changes. We call it the (intrinsic) Gaussian
curvature of ds®. The Gauss equation (5.4) claims that the intrinsic Gaussian curvature is identical

to the Gaussian curvature of the surface.

Proof of Theorem 5.3. We set

nonoI
112 122 Ig = 0172 - 9211 - 91(22 + 9291.
B BB

Then the integrability condition (5.1) is equivalent to I]Z: =0 (i,7 =1,2,3).
Step 1. By symmetricity of h;; and g%,

I3 = hi1 Ay + hia A3 — hat A} — hop AT = Z(huAlg — hy Al)
1

=> (hu > 9" ha —hy Zglshﬂ)
l s s

= g"huhe =Y ¢ haha =Y ¢"huha =Y g"hihy. = 0.
l,s l,s l,s l,s

Thus the condition I3 = 0 is satisfied automatically.
Step 2. Since

I =hyjo—hojn — > (T — Iijhe) (7 =1,2),
l

the conditions Ij?’ =0 (j = 1,2) are equivalent to the Codazzi equations (5.2) and (5.3).
Step 3. For j =1,2

I = —Aji,z + Ag,l + Z(FllelQ — A}

I
- Z(Qﬂhu)a + Z(gﬂhlz),1 + Zgls(hQSFijl — h1s 1Y)
I I Ls

= g (hua = hza) — Z(gghu — g/ hiz) + > g (hasT, — hasI3)
I I Ls

o Zgﬂ(hu,z —hi21) + Z Zgajglﬁ(gaﬁ,zhu — Gap,1hi2) + Zgls(hZSFfl - h1SF2jl)
!

I a,p l,s

- Zgﬂ(hll,Q - hl?,l) + Z gozjglﬁ Z ((gasF§2 + gsﬁpgsa)hll - (gasF[;l + gsBFfa)hIQ)
l la,B s
+ Zgls(h%ﬂjl — s TY)
l,s
==Y @ (huz—hioa) + Y g Thhu+ Y ¢ Tiohu =Y ¢ Thha = ¢ Tl by
l L,B l,a 1,8 l,a

+ Zgls(hQSF{l - hlsFle)

l,s
=- Zgjl(hll,Q —hiz1) — Z(nghls — IYhas) = — Zgjlfz?’a
l s l

()=~ ) ()
)=\ )\

that is,
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Here, we used Proposition 4.3 and the relation f;l =7 IA);c 771 ie.,
97 == 99" gapr
ap

Hence the conditions Ig =0 (j = 1,2) are equivalent to I;’ =0(j=12).
Step 4. Since
=TIy - Z(Fflpzlj — Iy TY;) + Afhjs — Abhy,
1

for i,j = 1,2, we have

Zgikfj = Rji + hiihj2 — hiahj,

where Rjj is the quantity given by (5.6). Since the right-most term of the definition of Rjj is
computed as

1
ngl(f’fjfiz - FQSstll) =3 Z((gkz,s + gsk,2 — G2s,k)(9tj1 + 91t,5 — G1j.t)

l,s s,t
— (9r1,t + Gik2 — 91k,t)(9sj22 + G265 — 92]‘75))’
Hence R;i is skew symmetric in j and k:

Rig = — Ry, Ri1 = Ry = 0.

Therefore I; =0 for 4,7 = 1,2 is equivalent to the Gauss equation (5.4). O

5.2 Integrability conditions for orthonormal frames

Under the formulation with orthonormal frame as in Proposition 4.8, we can compute the inte-
grability conditions. Since {2 and A are skew-symmetric matrices, the conditions consist of three
scalar equalities obviously. Such a formulation will be discussed in the lecture on the next quarter.
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Ezxercises
Let p: U — R3 be a regular surface of domain U C R?, and denote by (u',u?) = (u,v) the
coordinate system of U. And write the first and second fundamental forms as
ds® = Edu® + 2F dudv + Gdv® =Y _ gi; du’ du,
0,J
II = Ldu® + 2M dudv + N dv® = _ hy; du’ du?,
4,J
respectively.

5-1 Assume L = N = 0, that is, Il = 2M dudv = 2hi5 du' du?, Prove that, if the Gaussian
curvature K is negative constant,

E, =G, =0, that is, g11,2 = g22,1 = 0.
5-2 Assume F =0 and E = G = €27, where o is a function in (u,v). Let z = u+iv (i = v/—1)
and define a complex-valued function ¢ in z by

L(u,v) — N(u,v)
2

q(z) = —iM(u,v).

Prove that the Codazzi equations are equivalent to

00 _ a0
9z ¢ 0z

where H is the mean curvature, and

o _1/(90 .9 o _1
92 2\ou 'ov) B8z 2

9 ..9
ou ov )’
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6 The fundamental theorem for surfaces
6.1 The statement
Let U be a domain of u'u?-plane and let
T 911 912 7j hi1 hia
6.1 I= , I = ,
(6.1 <921 922) <h21 hzz)
be two symmetric matrices whose components are real-valued C*°-functions on U. In addition,
assume

=

(6.2) g11 > 0, g22 >0, and 911922 — g12921 > 0

hold on U. In other words, Tisa positive-definite matrix at each point on U. Define
1< 2
(6.3) I = B} > Mg+ ging — 9igk)s AT=D 9"y
=1 =1

where (g7) = (gi;) ™" is the inverse matrix of (g;;).

Theorem 6.1 (The fundamental theorem for surface theory). Assume U is simply connected,
and (gi;) and (h;j) satisfy the Gauss equation (5.4) and the Codazzi equations (5.2)—~(5.3) in the
previous section. Then there exists a reqular surface p: U — R3 such that

o the first fundamental form of p is ds®> = Z” gijdu® du?,

o the second fundamental form of p with respect to the unit normal vector field v := (p1 X
p2)/Ip1 X p2| coincides with I =3, ; hijdu’ du? .

Moreover, such a surface p is unique up to a transformation

p— Rp+ a, R € S0O(3), a € R3.

6.2 Uniqueness

Here we shall prove the uniqueness part of Theorem 6.1. Let p and P be regular surfaces in R?
defined on a domain U of u'u?-plane!®, with unit normal vector fields

. D1 X P2
and /R ALEAE SL

P1XDp2
Vi= —
P11 XDP2

- |P,1 X P,2|

respectively. Then the Gauss frame of p and p are written as
F = (p,1,p,2,V), and j_::: (ﬁ,17ﬁ,27ﬂ)7

respectively. Assume the coefficients (g;;) and (h;;)of the first and second fundamental forms are
common for p and p. Then F and F satisfy the Gauss-Weingarten equations (4.17)
B _ ry;, Iy, -—Ai
(6.4) F;=F; and F;=F, where ;= | I, I3 —A7
h1j hgj 0

Hence, for i =1, 2,
o ~ ~ ~ ~ ~ ~ ~
%}"}”1 =F; F '+ FF N =F; F - FF I F F T = F F T - F F =0

30. May, 2025. 06. June, 2025
10The uniqueness does not require simple connectedness of U.
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hold on U. Since we have assumed that U is a domain, U is (arcwise) connected. This implies

that R := FF ! is a constant matrix on U. Moreover, since p and p share their first fundamental
forms, it holds that

P1°P1 P1°P2 D1V g1 g1z O o
F'F=|p2-p1 p2-p2 pP2-v|=|921 g2 0|=FF=F R'RF.
v-p1 V-pa2 V-V 0 0 1

Hence RTR = id, that is, R is an orthogonal matrix. Moreover,

D1 XD X
P11 XP2 :Ru—Rp’l P2

v — — —
[P1 % Dol Ip1 X pal

implies R(p,1 X p2) = (Rp,1) X (Rp,2), hence det R = 1. Summing up, the Gauss frames F and F
are related as F = RF (R € SO(3)). By the first and second columns of this relation, it holds that

dp =P du' +p2du® = Rpdu’ + Rpodu® = R(dp).

Hence, by connectivitity of U again, a := p — Rp is a constant vector. O

6.3 FExistence

Next, we show the existence part of Theorem 6.1.

Lemma 6.2. Let (y;;) be a positive definite symmetric matriz, that is, y11 and 22 are positive,
Y11Y22 — V12721 > 0 and 12 = v21. Then there exists a vectors vi, vy and vy in R? such that

v; U = Vij, v3 - v; =0, v3-v3 = 1, and det(v1,v2,v3) >0
hold fori, j =1,2.

Proof. Let 6 € (0,7) be an angle satisfying cos 0 = v12//711722 € (—1,1) \ {0}, and set

1 cos 0
v =471 (0], vy 1= /722 | sind |, v3:= |0
0 0 1
Then v1, vo and v3 are desired vectors. O

Step 1. We fix a point Py in U. Then by Lemma 6.2, there exists a matrix Fy such that

911(Po) g12(Po) 0
(6.5) FiFo={921(Po) g22(Po) 0
0 0 1

Since (gi;) and (h;;) satisfy the Gauss and Codazzi equations, Theorem 5.3 implies that the
equation (6.4) for unknown matrix-valued function F. So, by Theorem 3.5, there exists a unique
matrix-valued function F defined on U satisfying

(6.6) F;=F, F(Po) = Fo
for a matrix Fy satisfying (6.5). Decompose the solution F into column vectors as

Flur,u?) = (a1 (ut, u?), az(ut, u?), asz(ut, u?)).



33 MTH.B405; Sect. 6

Then it holds that

0
w(al) = I''ya; + I'%as + hizas,

0
%(@) =I'y,a; + 3 as + hoas,

that is,
w:= a; du' + as du?
is a (vector-valued) closed one-form on the simply connected domain U. Hence by Poincaré’s
lemma (Theorem 1.9), there exists a map p: U — R3 with dp = w, that is,
(6.7) pi=ai, p2=as.

Step 2. We shall show that p obtained in the previous step is the desired one. Let F be a solution
of (6.6). Then the symmetric matrix-valued function F?F satisfies a system of linear partial
differential equations

OFTF
ouJ

=TFr'F+ FT R, FTFPo) = FlFo

where Fy is a matrix as in (6.5).
On the other hand, consider the matrix-valued function

g1 g12 0
Gi=1g21 g2 O
0 0 1
Then, by (6.3), it holds that
(6.8) G, =02]G+G02;,  G(Py) =F{ Fo.

Hence FT'F and G satisfy the same system of partial differential equations with the same initial
conditions. Thus, the uniqueness of the solution infers F7 F = G, that is,

ar-a; ai;-az ap-ag g1 gi2 O
azx-a; az-az az-az| =|ga1 go2 O
as-a; asz-a as-as 0 0 1

So, together with (6.7) and that det F > 0

9ij = P,i "D, vV =as.

Then
hij = (ai)j-v=pij- v,

that is, the coefficients of the second fundamental form coincides with (h;;). O
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Ezxercises

6-1 Let 0: U — R be a C"*°-function defined on a simply connected domain U of the uv-plane
R2. Assuming 6 satisfies 6, = sin @, prove that there exists a surface p: U — R3 whose first
and second fundamental forms are

ds?® = du® + 2 cos 0 du dv + dv?, II = 2sin 6 du dv.

6-2 Let 0: U — R be a C*°-function defined on a simply connected domain U of the uv-plane
R2. Assuming o satisfies Ao = —% sinh 20, prove that there exists a surface p: U — R? with

ds* = e® (du® + dv?), I = = ((€*7 + 1)du® + (e** — 1)dv?).

N =
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7 An application—Surfaces of constant mean curvature

7.1 Mean curvature

Let p: U > (u,v) + p(u,v) € R? be a regular parametrization of a surface defined on a domain
U C R?, and let v be its unit normal vector field. We write first and second fundamental forms as

ds? = E du® 4+ 2F dudv + G dv?, II = Ldu® + 2M dudv + N dv?,
where
T (F 6)= (o vem). @ (3 N) == (e ).
Since the parametrization is regular, the matrix T is positive definite:
EG-F*>0, E>0, G>0.
Then we define the Weingarten matrix A by
A=T7'1.

Definition 7.1. The mean curvature of the surface p is defined by

EN —2FM + GL
2(EG — F)?

1
H:=—-trA=
2

7.2 Area and mean curvature

To explain geometric meanings of mean curvature, we start with the area of surfaces: Let p: U —
R? be a regular parametrization of a surface as in the top of this subsection. Take a subdomain
V' C U such that the closure V' of V' is bounded and contained in U.

Definition 7.2. The area of the image p(V) of the surface is defined as
A, (V) = /Lda, da := Vdet I dudv = /EG — F2 dudv.
%

We call da the area element of p.
For a real number ¢, p* := p 4 tv is called the parallel surface of p with distance t.

Proposition 7.3.
A (V) = Ay (V) — 2t //dea Lot)  (t—0).
\%

Proof. The coefficient matrix of the first fundamental form of pt is obtained as

ft o Et Ft — (pu + tVu) : (pu + tVu) (pu + tVu) : (pv + tl/v)
' Ft Gt (p’u + tV’U) . (pu + tVu) (pv + tV’u) : (p'u + tyfu)
__<E2ﬂ; F —2tM

F —2tM G—%N)+dﬂ=l—%ﬂ+dw

06. June, 2025.
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Then

det I* = (EG — F?) — 2t(EN — 2FM + GL) + o(t)
EN —2FM + GL
EG — F?

= (EG - F?) (1 — 2t o(t)) = (EG - F?) (1 —4tH + o(t)) .

Hence the area element of p? is

dat : = Vdet T dudv = /EG — F2\/1 — 4tH + o(t) dudv = (1 — 2tH + o(t)) da
Integrating this, we obtain the conclusion. O

Roughly speaking, the mean curvature is the rate of change of the area of a family of parallel
surfaces of a surface. The following proposition supports this: We denote by D and S' = 9D the
unit closed disc {(u,v); u? + v* < 1} and its boundary, respectively. Let C C R? be a simple
closed curve in R? and denote S the set of surfaces p: D — R? with p(S') = C.

Fact 7.4. If a surface p € S¢ has the least area among all surfaces in Sc, then the mean curvature
of p identically vanishes.

If you are familiar to the variational method, this means that the Euler-Lagrange equation of
the area functional A: S¢ — R is “H = 0”. Keeping this fact in mind,

Definition 7.5. A minimal surface is a surface whose mean curvature vanishes identically.
On the other hand, the conditional extremal problem for the area functional, we have

Fact 7.6. When the volume of the enclosed domain is fixed, the closed surface with the least area
is of (non-zero) constant mean curvature.

7.3 FExamples of constant mean curvature surfaces

Since the mean curvature is invariant under congruence of R3, we have

Lemma 7.7. Let S C R3 be a surface (an image of a parametrized surface). Assume for all P
and Q € S, there exists an orientation preserving congruence F' of the Fuclidean 3-space satisfying
F(S) =S8 and F(P) = Q. Then the mean curvature of S is constant.

Example 7.8 (The plane). A plane p(u,v) = (u,v,0) is a minimal surface. In fact, since the unit
normal vector field v = (0,0, 1) is constant, II vanishes identically.

Example 7.9 (The round sphere). Let S := S%(r) C R? be the sphere of radius r > 0 centered
at the origin. Since the linear action of SO(3) on R? preserves S?(r) and transitive, the mean
curvature of S?(r) is constant.

Let us compute the value of the mean curvature: For each point p € S?(r), the position vector
p is perpendicular to the tangent plane of S%(r) at p. Hence v := (1/r)p is the (outward) unit
normal vector.

Consider the parallel surface

s {piw= (10 ) pipes=s0).

which is the sphere ov radius (1 + ¢/r). Then

Area of St — Area of S = 4x (r 4+ t)° — 471 = 8rrt + O(£?).
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catenoid Enneper’s helicoid

Figure 1: Minimal surfaces (cf. [UY17])

unduloid nodoid

Figure 2: Delaunay’s surfaces (constant mean curvature) (cf. [UY17])

Since the mean curvature H is constant, Proposition 7.3 yields that
8mrt = —2t // HdA = —2tH (area of S) = —t x 87r?H.
s

Hence the mean curvature (with respect to the outward unit normal) is —1/r.
Similarly, the mean curvature with respect to the inward unit normal is 1/r.

Example 7.10 (The cylinder). Let S be a circular cylinder of radius r whose axis is the vertical
axis of R3:

S={zx=(z,y,2); 2 +y* =r?}.
Since rotations around the z-axis and vertical translations acts on S transitively, the mean curva-
ture is constant. The same argument as in Example 7.9 works for a finite strip S’ := {(z,y,2) €
S;0 £ z £ 1}, for example, and one can deduce the mean curvature with respect to outward
(resp. inward) unit normal is —1/(2r) (resp. 1/2r).

Question 7.11. Are there any other constant mean curvature surfaces than the “trivial” examples
above?

7.4 Constant mean curvature surfaces

There are number of examples of constant mean curvature, see Figures 1 and 2.

On the other hand, the following uniqueness theorems are obtained in the middle of 20th
century. Here, a closed surface means an immersion p: S — R? of a compact 2-manifold without
boundary.
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Figure 3: Wente torus

Fact 7.12 (A. D. Alexandrov[Ale58]). The only closed surfaces of constant mean curvature without
self-intersections are the round spheres.

Fact 7.13 (H. Hopf [Hop5b3]). The only closed surfaces of constant mean curvature whose genus
zero are the round spheres.

Then the following problem arises:

Question 7.14 (Hopf’s problem). Are there closed surfaces of constant mean curvature other than
the round spheres.

In 1986, H. Wente constructed constant mean curvature torus [Wen86a] (see Figure 3). Besides,
N. Kapouleas also gave examples of constant mean curvature surfaces of genus = 2 [Wen86b, BK14].
These two results are obtained by quite different methods. In this lecture, an outline of Wente’s
construction is introduced as an application of the fundamental theorem for surface theory.

7.5 Wente torus

In this section, we outline the construction of constant mean curvature tori according to Wente
[Wen86a].

Definition 7.15. A function f defined on R? is said to be doubly periodic if there exists a pair
{v1,v3} of linearly independent vectors in R? such that

(7.1) fl@+v1) = f(z+v2) = f(z)y
holds for any & € R?. The basis {v1,v2} is called the period of f. n

Remark 7.16. If f: R? — R is doubly periodic with period {v1, v},
f(x +mivy + mavs) = f(x) x € R?

holds for all (my,ms) € Z2. In other words, the function f is invariant under the action of the
abelian group
I':=7Zv ® Zv,

on R? as translations.
Since the quotient space T' := R?/I" is a smooth 2-manifold diffeomorphic to the torus, the
doubly periodic function f is considered as a function on T .

So our goal is
« to construct a doubly periodic constant mean curvature immersion p: R? — R3.

For the construction, we apply the fundamental theorem for surface theory:
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Proposition 7.17. Let o: R? — R be a doubly periodic function with period {vy,vs}. If o satisfies
1.

(7.2) Ao = 0oyy + Opy = —3 sinh 20,

there exists a parametrized surface p: RZ — R3 with

(7.3) ds* = €% (du® + dv?), II' =~ ((e*7 + 1)du® + (€** — 1)dv?),

| —

whose mean curvature is identically 1/2. Moreover, there exist matrices R; € SO(3) and vectors
a; € R3 (i =1,2) such that

(7.4) p(x +v;) = Rip(x) + a; (i=1,2)
holds for all & € R2.

Proof. Exercise 6-2 yields the existence of p with (7.3). Moreover, since o(x + v;) = o(x), p(x +
v;) and p(x) have common first and second fundamental forms. Hence the uniqueness of the
fundamental theorem implies the existence of R; and a; as (7.4). O

In [Wen86a, Section IV], Wente constructed the solutions of (7.2) as follows:

Let a and b be positive numbers, and set 2 = [0,a] x [0,b] C R?, which is a closed
rectangle. First, consider the boundary value problem

1
Aaz—gsinhQU on {2, oc=0 on 02, oc>0 on £2°

where §2° is the interior of {2. Then by reflecting this solution about boundaries, one
can extend o on whole R?, and the resulting function is doubly periodic with period

{(2a,0), (0,2b)}.

Observing the symmetries of o, one can deduce that Ry =id, a; =0 (i = 1,2), and

cosf) —sinf 0
Ry = | sinf cosf 0],
0 0 1

where 6 = 0(a,b) is a real number. Moreover, one can show that 6 is a non-constant continuous
function in (a,b). Hence there exists (a,b) such that 8 = 6(a,b) € 2rQ. For such (a,b), R]* = id
for some integer m. This means that p is {(ma,0), (0,b)}-periodic, which yields the example.

After Wente, a lot of results related Wente-type tori are obtained. See, for example, [Abr87,
Wal87, PS89].
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Glossary

1-form 57 1-F£3K, 3

adapted frame &5, 23

arc-length parameter JIEFE, 11

area element HFEZEH, 35

area functional HIFEFLEIEL, 36

area [HfH, 35

Cauchy-Riemann equations I —3— « J—<
iR, 16

Christoffel symbols 27 U A b v 7 = )LEl4E, 21

Codazzi equations 2 X v F HE, 27

column vector X2 ~v 1, 7

commutativity AJHAME, 2

compatibility condition i# &5, 13

conjugate 4%, 17

connection form R, 25

covariant derivative #2573, 27

curvature ¥, 11

determinant 1753, 1

differential 2-form 47 2-F£3X, 3
differential form M7, 3
differential one form % 1-F¢3¢, 3
differential #77, 3

distance HEEE, 1, 19

domain fEI, 1

eigenvalue [EHHE, 7

Euclidean space — 2 1 v FZE[d, 1, 19

Euler-Lagrange equation A 5 —+5 75>
7tExK, 36

exterior differential #M¥ 73, 3
Frenet frame 7L 4#, 11

gauge transformation 7°— &, 24

Gauss frame 47 2%, 21

Gauss-Weingarten formula 7%V X « 7 A4 ¥ AL
TR, 21

Gaussian curvature 4 v A&, 20

general linear group (GL(n,R)) —fFRTEHRE, 7

harmonic function FHFIEEEL, 16

holomorphic IERI (#8EB%2Y) | 16

identity matrix BT, 1
immersion {X®iAA, 19

initial value problem FJEAfERTE, 5
inner product P#, 1, 19
integrability condition FIfE &M, 13
isometry FREH, HFREH 1
isometry FRZH, 19

Kronecker’s delta symbol 7 B4 v A —DF L&
L, 21

Laplacian 7 77> 7 >, 16

latitude F&FE, 2

linear function 1 XBI%K, 6

linear ordinary differential equation R/ &M 7>
JitEs, 6

longitude %, 2

map BA%, 1

matrix 1751, 1

mean curvature “E3JEIER, 20, 35

mean value theorem FEMED EH, 2
Mercator’s world map X /L b LD FRHIK, 2
minimal surface M/)NHTH, 36

norm /LA, 1,7, 19

ODE — ordinary differential equation, 5
ordinary differential equation &7 HER, 5
orientation preserving A= Z{£D, 1

origin JR A, 36

orthogonal group (O(n)) EXEE, 8
orthogonal matrix E21751, 1

outer product #}&, 19

parallel surface *FATHIH, 35
parametrization »$7 X —&X KR, 2, 19
partial derivative fRIH7>, IREREEL, 2
partial differential equation R D HTEX, 13
perpendicular HE[E, 36

plane “F[H, 36

Poincaré lemma K7 >4 L D&, 4
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position vector fiiE~XZ b L, 36
principal curvatures FHIZ, 20

radius 1%, 36

regular curve 1EHIHIFE, 11
regular matrix 1IERI{TA1, 7
row vector {TX7% kL, 1

simply connected HiEAE, 4, 14

skew-symmeetric matrix XATH, EXFRTA,
8

solution f#, 5

space curve ZERIHHAR, 11

special linear group (SL(n,R)) FiRKRIEHE, 8

special orthogonal group (SO(n)) FFREAE, 8

sphere BRI, 2, 36

surface HHTAI, 1

tori b—2 2 (BEIE) |, 38
torsion #R#%, 11

torus b —7 X, 38

total differential 7>, 3
transposition ¥5&, 1

triangle inequality = FEFK, 7

unit normal vector BN JENRZ hL, 19
unknown function ARFIBEEL, 5

variational method Z4737%, 36
vector product X7 kJLFE, 19



