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2 Surface of constant Gaussian Curvature

A quick review of surface theory

Immersed surfaces A C∞-map p : U → R3 defined on a domain U ⊂ R2 is called an immersion
or a parametrization of a regular surface if

(2.1) pu(u, v) :=
∂p

∂u
(u, v), and pv(u, v) :=

∂p

∂v
(u, v) are linearly independent

at each point (u, v) ∈ U . The unit normal vector field to an immersion p : U → R3 is a C∞-map
ν : U → R3 satisfying

(2.2) ν · pu = ν · pv = 0, |ν| = 1

for each point on U .
The first fundamental form ds2 is defined by

(2.3) ds2 := dp · dp = E du2 + 2F du dv +Gdv2,(
E := pu · pu, F := pu · pv = pv · pu, G := pv · pv

)
,

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).
The three functions E, F and G defined on U are called the coefficients of the first fundamental
form. On the other hand, the second fundamental form as

(2.4) II := −dν · dp = Ldu2 + 2M dudv +N dv2,(
L := −pu · νu,M := −pu · νv = −pv · νu, N := −pv · νv

)
.

Here, we used a relation νu · pv = (ν · pv)u − ν · pvu = 0− ν · pvu = −ν · puv = νv · pu. Define two
symmetric matrices

Î :=

(
E F
F G

)
=

(
pTu
pTv

)
(pu, pv), ÎI :=

(
L M
M N

)
= −

(
pTu
pTv

)
(νu, νv)

which are called the first and second fundamental matrices, respectively. Since EG − F 2 =
|pu|2|pv|2 − (pu · pv)2 > 0, the first fundamental matrix Î is a regular matrix. The area ele-
ment of the surface is defined as

(2.5) dA :=
√
EG− F 2 du dv.

Since Î is regular, the matrix

(2.6) A := Î −1 ÎI =

(
A1

1 A1
2

A2
1 A2

2

)
,

called the Weingarten matrix, is defined. The Gaussian curvature K and the mean curvature H
are defined as

(2.7) K := λ1λ2 = detA =
det ÎI

det Î
, H :=

1

2
(λ1 + λ2) =

1

2
trA,

both of which do not depend on choice of parametrization.
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Figure 4: Gauss-Bonnet theorem for the sphere

Gauss-Bonnet theorem

Under the situation above, a parametrized curve γ : I → U (or its image γ̂ = p ◦ γ on the surface),
where I ⊂ R is an interval, is called pregeodesic if it satisfies

(2.8) det
(
γ̂′(t), γ̂′′(t), ν̂(t)

)
= 0

(
′ =

d

dt
, γ̂(t) = p ◦ γ(t), ν̂(t) = p ◦ ν(t)

)
for all t ∈ I. On the other hand, γ is called a geodesic if it satisfies

(2.9) γ̂′′(t)× ν̂(t) = 0,

where “×” denotes the vector product of R3. In other words, the curve γ is a geodesic if and only
if the acceleration vector γ̂′′ is proportional to the normal of the surface. The following is obvious.

Lemma 2.1. A geodesic is a pregeodesic.

Definition 2.2. A (geodesic) triangle on the surface is a closed domain of the surface which is
homeomorphic to the closed disc, whose boundary consists of three segments AB, BC and CA of
pregeodesics, which is called the edge. Three points A, B, C where two of the edges meet together
are called vertices of the triangle. The angle of the triangle at the vertex A (resp. B, C) is the
angle of tangent vectors of the geodesics CA and AB at A (resp. AB and BC at B, BC and CA at
C).

Theorem 2.3 (Gauss-Bonnet theorem for triangles, [UY17, Theorem 10.6]). Let 4ABC be a
geodesic triangle as in Definition 2.2. Then

∠A+ ∠B+ ∠C = π +

∫∫
4ABC

K dA,

where K and dA are the Gaussian curvature and the area element, respectively.

Example 2.4. Let S2 be the unit sphere in R3. Then a pregeodesic is a great circle, that is,
the intersection of a plane passing through the center of the sphere and S2. Then for a geodesic
triangle of S2,

∠A+ ∠B+ ∠C = π + the area of the surface

holds because the Gaussian curvature of the surface is identically 1 (cf. Figure 4).
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Figure 5: Beltrami’s pseudosphere

Pseudospherical surfaces

Recall Lambet’s result introduced in the previous section:

Fact 2.5 (Lambert (1728–1777)). In absolute geometry, there exists a negative constant K such
that for all triangle ABC

∠A+ ∠B+ ∠C− π = K4ABC

where 4ABC denotes the area of the triangle.

Comparing this fact and Theorem 2.3, we notice that

A surface of constant negative Gaussian curvature K satisfies the Lambert’s theorem
if we consider a geodesic as a “line”.

In this seance, a surface of constant negative curvature can be regarded as a (local) realization of
non-Euclidean geometry. The precise meaning of realization, and “local” will be clarified latter
lectures. By a homothetic change p 7→ cp, where c is a positive constant, the Gaussian curvature
of the surface is changed as K 7→ c−2K. So when we consider a realization of non-Euclidean
geometry, we may fix K = −1 without loss of generality.

Definition 2.6. A pseudospherical surface is a surface of constant Gaussian curvature −1.

Example 2.7 (The Pseudosphere). A surface

p(u, v) :=
(
sech v cosu, sech v sinu, v − tanh v

) (
(u, v) ∈ (0,+∞)× (−π, π)

)
is a pseudospherical surface, which is known as Beltrami’s pseudosphere (Fig. 5).
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Exercises

2-1 Let γ(t) =
(
x(t), z(t)

)
(γ ∈ I) be a parametrized curve on the xz-plane satisfying

(∗)
(
x′(t)

)2
+ (z′(t))2 = 1 (t ∈ I),

where I ⊂ R is an interval. Consider a surface

pγ(s, t) :=
(
x(t) cos s, x(t) sin s, z(t)

)
,

which is a surface of revolution of profile curve γ.

(1) Show that pγ is pseudospherical if and only if z′′ = z holds.
(Hint: use the ralation x′x′′ + y′y′′ = 0 obtained by differentiating (∗).)

(2) Can one choose I = R?

2-2 Let a and b be real numbers with a 6= 0. Compute the Gaussian curvature of the surface

p(u, v) = a(sech v cosu, sech v sinu, v − tanh v) + b(0, 0, u).


