3 Pseudospherical surfaces and asymptotic Chebyshev net

Preliminaries

Let U and V be domains of \mathbb{R}^n

Definition 3.1. A C^{∞} bijection $\varphi: V \to U$ is said to be a *diffeomorphism* if its inverse is also of class C^{∞} .

Lemma 3.2. If $\varphi \colon V \to U$ is a diffeomorphism,

$$(D\varphi)_{\varphi^{-1}(q)} \circ \left(D(\varphi^{-1})\right)_q = \mathrm{id}_{\mathbb{R}^n}, \qquad and \qquad \left(D(\varphi^{-1})\right)_{\varphi(p)} \circ (D\varphi)_p = \mathrm{id}_{\mathbb{R}^n}$$

hold at each point of $q \in U$ and $p \in V$, where $D\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ and $D(\varphi^{-1}) \colon \mathbb{R}^m \to \mathbb{R}^n$ denote the differentials of the map φ and φ^{-1} . $(D\varphi)_p$ is a non-singular matrix on each point of $p \in V$.

Remark 3.3. Define $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ by $(x, y) = \varphi(\xi, \eta) = (\xi^3, y)$. Then the Jacobi matrix $D\varphi$ is computed as

$$D\varphi = \begin{pmatrix} x_{\xi} & x_{\eta} \\ y_{\xi} & y_{\eta} \end{pmatrix} = \begin{pmatrix} 2\xi^2 & 0 \\ 0 & 1 \end{pmatrix}$$

which is singular at the origin. Hence φ is not a diffeomorphism though it is a bijection.

Theorem 3.4 (The inverse function theorem). Let $\varphi: U \to \mathbb{R}^n$ be a C^{∞} -map defined on a domain $U \subset \mathbb{R}^n$ and $p \in U$. Assume $(D\varphi)_p$ is non-singular. Then there exists a neighborhood $V \subset U$ of p such that $\varphi|_V: V \to \varphi(V)$ is a diffeomorphism. Moreover, $(D(\varphi^{-1})_{\varphi(q)} = (D\varphi)_q^{-1}$ holds for each $q \in V$.

Change of Parameters

Let $p: U \to \mathbb{R}^3$ be a regular parametrization of a surface in \mathbb{R}^3 and $\varphi V \to U$ a diffeomorphism, where U and V are domains of \mathbb{R}^2 . Then

(3.1)
$$\tilde{p} := p \circ \varphi \colon V \to \mathbb{R}^3$$

gives another regular parametrization of a surface, whose image coincides with that of p. Such \tilde{p} is said to be a parametrized surface obtained by the *coordinate change* φ of p.

Now we write $\varphi: (\xi, \eta) \to (u, v)$. Then by the chain rule, it holds that

$$(3.2) \qquad (\tilde{p}_{\xi}, \tilde{p}_{\eta}) = (u_{\xi}p_u + v_{\xi}p_v, u_{\eta}p_u + v_{\eta}p_v) = (p_u, p_v)J, \qquad \text{where} \quad J := D\varphi = \begin{pmatrix} u_{\xi} & u_{\eta} \\ v_{\xi} & v_{\eta} \end{pmatrix},$$

here $p_u, \, p_v, \, \tilde{p}_{\xi}, \, \tilde{p}_{\eta}$ are considered to be functions valued in the column-vectors.

We write the first fundamental form ds^2 (resp. $d\tilde{s}^2$) and the second fundamental form II (resp. \tilde{II}) of p (resp. \tilde{p}) as

$$\begin{split} ds^2 &= E\,du^2 + 2F\,du\,dv + G\,dv^2, \qquad II = L\,du^2 + 2M\,du\,dv + N\,dv^2 \\ d\tilde{s}^2 &= \widetilde{E}\,d\xi^2 + 2\widetilde{F}\,d\xi\,d\eta + \widetilde{G}\,d\eta^2, \qquad \widetilde{II} = \widetilde{L}\,d\xi^2 + 2\widetilde{M}\,d\xi\,d\eta + \widetilde{N}\,d\eta^2 \end{split}$$

Since the unit normal vector $\tilde{\nu}$ of \tilde{p} coincides with $\nu \circ \varphi$, (3.2) yield

$$\begin{pmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{pmatrix} = J^T \begin{pmatrix} E & F \\ F & G \end{pmatrix} J, \qquad \begin{pmatrix} \widetilde{L} & \widetilde{M} \\ \widetilde{M} & \widetilde{N} \end{pmatrix} = J^T \begin{pmatrix} L & M \\ M & N \end{pmatrix} J.$$

^{27.} June, 2025.

This means that one obtain

$$ds^2 = d\tilde{s}^2, \qquad II = II$$

by substituting

$$du = u_{\xi} d\xi + u_{\eta} d\eta, \qquad dv = v_{\xi} d\xi + v_{\eta} d\eta.$$

In other word, the first and second fundamental forms are invariant under changes of parameters. Moreover, the Gaussian curvature $K = (LN - M^2)/(EG - F^2)$ is also invariant under change of parameters.

Asymptotic parameters

For a surface of negative Gaussian curvature, there exists a parameter such that its second fundamental matrix is anti-diagonal, called an *asymptotic coordinate system*. In other words, a parameter (u, v) is an asymptotic coordinate system if and only if the second fundamental form is in the form

$$II = 2M \, du \, dv.$$

To prove this fact, we prepare

Lemma 3.5. Let $\omega = \alpha du + \beta dv$ be a 1-form defined on a domain U of the uv-plane \mathbb{R}^2 , where P and Q are functions in (u, v). Assume $(\alpha, \beta) \neq (0, 0)$ at $P \in U$. Then there exists a neighborhood $V \subset U$ of P and functions φ and ξ on V such that

$$\varphi \omega = d\xi, \qquad \varphi(\mathbf{Q}) \neq 0 \quad for \quad \mathbf{Q} \in V.$$

Proof. Let $\gamma(s) = (u_0(s), v_0(s))$ a curve on U defined on an interval $I := (-\varepsilon, \varepsilon)$ ($\varepsilon > 0$) satisfying $\gamma(0) = P, \gamma'(s) \neq 0$ ($s \in I$), and $\gamma'(0) = (u'_0(0), \dot{v}'_0(0))$ satisfies

(3.3)
$$\alpha(\mathbf{P})u'_{0}(0) + \beta(\mathbf{P})v'_{0}(0) \neq 0.$$

Then for each $s \in I$, there exists a solution $((u^s(t), v^s(t)) (t \in (-\delta_s, \delta_s)))$ of the ordinary differential equation

$$\frac{d}{dt}u_s(t) = -\beta(u_s(t), v_s(t)), \qquad \frac{d}{dt}v_s(t) = \alpha(u_s(t), v_s(t)), \qquad u_s(0) = u(s), \quad v_s(0) = v(s).$$

Then, by a regularity of the solution of ordinary differential equations with respect to parameters, we obtain a smooth map

$$(s,t)\mapsto (u(s,t),v(s,t)):=(u_s(t),v_s(t)).$$

In particular,

$$\left(u(0,0), v(0,0)\right) = \mathbf{P}, \quad \frac{\partial u}{\partial s}(0,0) = u_0'(0), \quad \frac{\partial v}{\partial s}(0,0) = v_0'(0), \quad \frac{\partial u}{\partial t}(0,0) = -\beta(\mathbf{P}), \quad \frac{\partial v}{\partial t}(0,0) = \alpha(\mathbf{P})$$

hold. Hence by (3.3),

$$\det \begin{pmatrix} \frac{\partial u}{\partial s}(0,0) & \frac{\partial u}{\partial t}(0,0) \\ \frac{\partial v}{\partial s}(0,0) & \frac{\partial v}{\partial t}(0,0) \end{pmatrix} = \det \begin{pmatrix} u_0'(0) & -\beta(\mathbf{P}) \\ v_0'(0) & \alpha(\mathbf{P}) \end{pmatrix} \neq 0$$

Thus, by the inverse function theorem, there exists a neighborhood V of P such that the map $(s,t) \mapsto (u,v)$ is a diffeomorphism, that is, (s,t) is a new coordinate system on $V \subset \mathbb{R}^2$. Using this parameter, we can write

$$\omega = \alpha \, du + \beta \, dv = \alpha \left(\frac{\partial u}{\partial s} \, ds + \frac{\partial u}{\partial t} \, dt \right) + \beta \left(\frac{\partial v}{\partial s} \, ds + \frac{\partial v}{\partial t} \, dt \right)$$
$$= \alpha (-\beta \, ds + u_t \, dt) + \beta (\alpha \, ds + v_t \, dt) = (u_t \alpha + v_t \beta) dt.$$

So, by setting $\varphi := 1/(u_t \alpha + v_t \beta)$ and $\xi = t$, we have the conclusion.

Remark 3.6. Lemma 3.5 implies that any 1-form on a domain of \mathbb{R}^2 is locally a non-zero function multiple of an exact 1-form. The function φ in is called an *integrating factor* of the form ω .

Remark 3.7. Lemma 3.5 is the special (2-dimensional) case of Caratheodory's principle, which is often referred in the context of thermodynamics. In fact, Caratheodory's principle says that for any 1-form ω on *n*-manifold (or \mathbb{R}^n), there exists an integrating factor if and only if $\omega \wedge d\omega \neq 0$.

Proposition 3.8 (Asymptotic Coordinate system). Let $p: U \to \mathbb{R}^3$ be a regular parametrization of a surface in \mathbb{R}^3 whose Gaussian curvature is negative on U. Then for each $P \in U$, there exists an asymptotic coordinate system on a neighborhood of P.

Proof. Write the second fundamental form of p as $II = L du^2 + 2M du dv + N dv^2$. Since the Gaussian curvature is negative, $-\kappa^2 := LN - M^2$ is negative.

When $L(\mathbf{P}) = 0$, setting $u = \frac{1}{\sqrt{2}}(s-t)$, $v = \sqrt{12}(s+t)$, we get

$$II(P) = 2M(P) \, du \, dv = M(P)(ds - dt)(ds + dt) = M \, ds^2 - 2M \, dt^2.$$

Since L(P) = 0, $\kappa(P)^2 = M^2(P) \neq 0$, and hence the first coefficient of II with respect to the coordinate system (s, t) is not zero. Thus, we may assume $L \neq 0$ holds on a neighborhood of P, without loss of generality.

When $L \neq 0$,

$$\begin{aligned} H &= L \left(du + \frac{M}{L} \, dv \right)^2 + \frac{LN - M^2}{L} dv^2 = L \left(\left(du + \frac{M}{L} \, dv \right)^2 - \left(\frac{\kappa}{L} \, dv \right)^2 \right) \\ &= L \left(du + \frac{M + \kappa}{L} \, dv \right) \left(du + \frac{M - \kappa}{L} \, dv \right) \end{aligned}$$

Then by Lemma 3.5, there exists functions ξ , η , φ and ψ such that $\varphi(\mathbf{P}) \neq 0$, $\psi(\mathbf{P}) \neq 0$ and

$$du + \frac{M+\kappa}{L} dv = \varphi d\xi, \quad du + \frac{M-\kappa}{L} dv = \psi d\eta.$$

Here

$$\det \begin{pmatrix} \xi_u & \xi_v \\ \eta_u & \eta_v \end{pmatrix} = \frac{1}{\varphi\psi} \det \begin{pmatrix} 1 & \frac{M+\kappa}{L} \\ 1 & \frac{M-\kappa}{L} \end{pmatrix} = \frac{1}{\varphi\psi} \frac{2\kappa}{L} \neq 0$$

holds at P. Hence $(s,t) \mapsto (\xi,\eta)$ is a change of coordinates, and

$$II = 2M \, d\xi \, d\eta, \qquad (2M = L\varphi\psi).$$

So (ξ, η) is an asymptotic coordinate system.

Asymptotic Chebyshev net

Theorem 3.9. For a each point P of a surface of constant negative Gaussian curvature $-k^2$, there exists a neighborhood U of P and coordinate system (ξ, η) such that the first and second fundamental forms are in the form

(3.4)
$$ds^2 = d\xi^2 + 2\cos\theta \,d\xi \,d\eta + d\eta^2, \qquad II = 2k\sin\theta \,d\xi \,d\eta,$$

where θ is a smooth function in (ξ, η) with $0 < \theta(\xi, \eta) < \pi$.

Proof. By Proposition 3.8, there exists an asymptotic coordinate system (u, v) around P:

$$ds^2 = E \, du^2 + 2F \, du \, dv + G \, dv^2$$
, $II = 2M \, du \, dv$.

Then by the result in Exercise 5-1 of MTH.B405², $E_v = G_u = 0$ holds. Since both $E = p_u \cdot p_u$ and $G = p_v \cdot p_v$ are positive, we can write

$$E du^{2} = (e(u) du)^{2}, \qquad G dv^{2} = (g(v) dv)^{2},$$

where e(u) and g(v) are positive functions in u and v, respectively. Set

$$\xi = \xi(u) = \int_{u_0}^u e(t) dt, \qquad \eta = \eta(v) = \int_{v_0}^v g(t) dt,$$

where $\mathbf{P} = (u_0, v_0)$. Then the map $(u, v) \mapsto (\xi(u), \eta(v))$ is a coordinate change because e and g are positive, and the first fundamental form and second fundamental form are written as

$$ds^2 = d\xi^2 + 2\widetilde{F} \, d\xi \, d\eta + d \, \eta^2, \quad II = 2\widetilde{M} \, d\xi \, d\eta.$$

Since the Gaussian curvature K is $-k^2$, we have

$$\widetilde{M}^2 = k^2 \left(1 - \widetilde{F}^2 \right),$$
 that is, $\widetilde{F}^2 + \left(\frac{\widetilde{M}}{k} \right)^2 = 1.$

So there exists a function θ such that

$$\widetilde{F} = \cos \theta, \qquad \widetilde{M} = k \sin \theta.$$

Since the surface is regular, $1 - \tilde{F}^2 = 1 - \cos^2 \theta > 0$ holds. So θ can move on the interval $(0, \pi)$ or $(\pi, 2\pi)$. In the latter case, replacing η by $-\eta$ and θ by $\pi - \theta$, we have the conclusion.

Remark 3.10. The parameter

Example 3.11. $p(u, v) := (\operatorname{sech} v \cos u, \operatorname{sech} v \sin u, v - \tanh v).$

²Advanced Topics of Geometry A1