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4 A construction of pseudospherical surfaces

4.1 Gauss-Weingarten equation

Let p : U → R3 be a regular parametrization of a pseudospherical surface of constant Gaussian
curvature −1 defined on a domain U ⊂ R2. By the result of the previous lecture, we may assume
the coordinate system (x, y) on U is the asymptotic Chebyshev net:

(4.1) ds2 = dx2 + 2 cos θ dx dy + dy2, II = 2 sin θ dx dy,

where θ = θ(x, y) is a smooth function in (x, y) valued on an interval (0, π). Now we define a new
coordinate system (u, v) by

(4.2) x =
1

2
(u− v), y =

1

2
(u+ v),

and denote the new prametrization p((u − v)/2, (u + v)/2) by p(u, v). Then the first and second
fundamental forms are written as

(4.3) ds2 = cos2
θ

2
du2 + sin2

θ

2
dv2, II = cos

θ

2
sin

θ

2
(du2 − dv2).

Since |pu| = cos θ
2 , |pv| = sin θ

2 , and pu is perpendicular to pv, we can take the orthornomal frame
(e1, e2, e3) satisfying

(4.4) pu = cos
θ

2
e1, pv = sin

θ

2
e2, ν = e3,

where ν is the unit normal vector field of p. So we get the map

F := (e1, e2, e3) : U −→ SO(3)

called the frame or an adapted frame of the surface, here SO(3) is the set of 3× 3-orthogonal ma-
trices with positive determinant. The following formula is a consequence of the Gauss-Weingarten
equation (cf. Theorem 4.2 in MTH.B405, see also Exercise 4-2 in the same class).

Proposition 4.1. Under the situation above, the frame F satisfies{
Fu = FΩ
Fv = FΛ

; Ω =

 0 −θv/2 − sin θ
2

θv/2 0 0
sin θ

2 0 0

 , Λ =

 0 −θu/2 0
θu/2 0 cos θ

2

0 − cos θ
2 0

 .

Moreover, the function θ = θ(u, v) satisfies the sine-Gordon equation

(4.5) θuu − θvv = sin θ.

Proof. In spite of the direct conclusion of the Gauss-Weingarten equation, we’ll give a direct proof
for a sake of convenience. Differentiating the first equality of (4.4) in u, we have

puu = −θu
2

sin
θ

2
e1 + cos

θ

2
(e1)u,(4.6)

puu · e2 = cos
θ

2

(
(e1)u

)
· e2,(4.7)

puu · e3 = cos
θ

2

(
(e1)u

)
· e3(4.8)
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where the third equality is nothing but the definition of the second fundamental form. On the
other hand, by the definition of the first and second fundamental forms, we have

sin
θ

2
puu · e2 = puu · pv = (pu · pv)u − pu · puv = −1

2
(pu · pu)v =

θv
2

sin
θ

2
cos

θ

2
,(4.9)

puu · e3 = puu · ν = cos
θ

2
sin

θ

2
.(4.10)

Since (e1)u · e1 = 1
2 (e1 · e1)u = 0, we have

(
e1
)
u
=
θv
2
e2 + sin

θ

2
e3,

which proves the first column of Ω. On the other hand,

0 = pvu · e3 =

(
sin

θ

2
e2

)
u

· e3 = sin
θ

2

(
e2
)
u
· e3,

proving the (3, 2)-component of Ω. Since F is orthogonal, Ω is skew-symmetric. Thus we get the
expression of Ω. The components of Λ are obtained in the similar way.

Remark 4.2. The equation (4.5) is equivalent to the equation

(4.11) θxy = sin θ,

which is the integrability condition with respect to the asymptotic Chebyshev net.
As a converse assertion, the fundamental theorem for surface theory deduces

Theorem 4.3. Let θ : U → (0, π) be a smooth function defined on a simply connected domain
U ⊂ R2 satisfying the sine-Gordon equation (4.5) Then there exists a regular parametrization
p : U → R3 of a pseudospherical surface whose first and second fundamental forms are written as
(4.3).

Example

As an example of Theorem 4.3, we construct the surfaces of revolution (cf. Exercise 2-1).

Sine-Gordon equation and the equation of pendulum: We assume the function θ = θ(u, v)
depends only on the variable v: θ = θ(v). Then the sine-Gordon equation turns to be

(4.12) θ̈ = − sin θ

(
˙ =

d

dv

)
,

which is the equation of the motion of pendulums. In particular,

(4.13)

(
θ̇

2

)2

+ sin2
θ

2
= E2

holds, where E is a non-negative constant. When E = 0, sin(θ/2) must be zero, which does
not satisfy θ ∈ (0, π). On the other hand, when E = 1, the solution is written in an elementary
function:

(4.14) θ = θ1 := 4 tan−1 e
v − 1

ev + 1
= 4 tan−1 tanh v
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Solving Gauss-Weingarten equation: In our case, the Gauss-Weingarten equation (Proposi-
tion 4.1) is rewritten as

(4.15)

{
Fu = FΩ
Fv = FΛ

; Ω =

 0 −θ̇/2 − sin θ
2

θ̇/2 0 0
sin θ

2 0 0

 , Λ =

0 0 0
0 0 cos θ

2

0 − cos θ
2 0

 .

Let

(4.16) c = c(v) :=
θ̇(v)

2E
, s = s(v) :=

1

E
sin

θ(v)

2
.

Then by (4.13) and (4.12), it holds that

(4.17) c2 + s2 = 1, ċ = − cos
θ

2
s, ṡ = cos

θ

2
c.

Using these, we set the orthogonal matrix P = P (v) by

(4.18) P :=

1 0 0
0 c −s
0 s c

 .

Note that the third column of P is the 0-eigenvector of Ω. Since

Ω̃ := P−1ΩP = PTΩP = E

0 −1 0
1 0 0
0 0 0


and both Ω and P are functions depending only on v, the first equation of (4.15) is reduced to

(FP )u = (FP )Ω̃,

which can be solved as

FP = F0(v)R(u), R(u) :=

cosEu − sinEu 0
sinEu cosEu 0

0 0 1

 ,

where F0 is an SO(3)-valued function in v. Substituting this into the second equation of (4.15),

Ḟ0 = (FPRT )vFvPR
T + F ṖRT = FΛPRT + F ṖRT

= F0RP
TΛPRT + F0RP

T ṖRT = F0R
(
PTΛP + PT Ṗ

)
RT = O

holds because of (4.17) and the definition of Λ. Hence F0(v) is constant, and by choosing an
appropriate initial condition, we obtain

(4.19) F = (e1, e2, e3) = R(u)P (v).

Hence we have

e1 =

cosEu
sinEu

0

 = u1, e2 = c(v)

− sinEu
cosEu

0

+

 0
0
s(v)

 =
θ̇

2E
u2 +

1

E
sin

θ

2
u3,

where R = (u1,u2,u3). By (4.4), the corresponding surface p = p(u, v) satisfies

(4.20) dp = cos
θ(v)

2
v1(u) du+

θ̇(v)

2E
sin

θ(v)

2
v2(u) dv +

1

E
sin

θ(v)

2
v3 dv.

Integrating this, we obtain

p =
−2

E
cos

θ

2
v2 +

1

E
v3

∫ v

v0

sin
θ(t)

2
dt,

which is a surface of revolution.
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Exercises

4-1 The constant function θ(u, v) = 0 is a solution of the sine-Gordon equation (4.5) although it
does not satisfy the condition 0 < θ < π. In this case, explain what happens on the solution
of (??) and resulting “surface” p(u, v).

4-2 Let θ = θ(x, y) be a solution of the sine-Gordon equation θxy = sin θ. Assume a function ϕ
satisfies (

ϕ− θ

2

)
x

= a sin
ϕ+ θ

2
,

(
ϕ+ θ

2

)
y

=
1

a
sin

ϕ− θ

2
,

where a is a non-zero constant. Prove that ϕ is also a solution of the sine-Gordon equation.


