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Introduction

This is the second half of two series of lectures, Advanced Topics in Geometry A1 and B1, in which
the fundamental theorem for surface theory and its applications are treated.

Throughout this lecture, object of our interest is “surfaces in the Euclidean 3-space with con-
stant negative Gaussian curvature”, which is a local model of non-Euclidean geometry.

In particular, we prove Hilbert’s theorem, which claims nonexistence of global model of non-
Euclidean geometry as surfaces in the Euclidean 3-space. To prove the theorem, a way to construct
constant negative Gaussian curvature surfaces via the fundamental theorem for surface theory is
discussed.

Finally, we show that the global model of non-Euclidean geometry is realized as a surface in
3-dimensional Lorentz-Minkowski space.

An aim of the lectures for students is to observe mathematical view around undergraduate
calculus, linear algebra, and highschool geometry.

13. June, 2025.
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1 Non-Euclidean geometry

One of the oldest books on Mathematics is probably Euclid’s The Elements (ca. 300 B. C.).
Though the original book of this work has been lost, it became known throughout the world
through manuscripts and translations into numerous languages [Euc56, Euc11].

The first book of The Elements begins with 23 Definitions (Figure 1), five Postulates (Figure 2,
left), and Common Notions (fundamental laws concerning relations between quantities, Figure 2,
right), on the basis of which the propositions of plane geometry are proved. This style of the book
can be regarded as a prototype of the arguments in modern mathematics, and was studied mainly
in Western Europe as “the norm of learning” until the modern era.

Figure 1: Definitions, Book 1 of the Elements [Euc56]

The establishment of The Elements, its meaning, the history of the parallel postulate, and
the birth of non-Euclidean geometry will be treated in the subject Transdisciplinary studies 20 :
Mathematics Learn from History (LAH.T420)1.

Now, we state the five postulates of Euclid:

Postulate I. To draw a straight line from any point to any point.

This requires that there exists unique “line segment connecting two points”.

Postulate II. To produce a finite straight line continuously in a straight line.

This requires that the line segment can be extended to any extent up to infinite length.

Postulate III. To describe a circle with any centre and distance.

Postulate IV. That all right angles are equal to one another.

Here, the definition of the right angles

When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right (Definition 10).

13. June, 2025. Revised: 20. June, 2025 (Ver. 2)
1This course was completed in the first quarter of this academic year, but will be offered again next year.
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Figure 2: Postulates and Common Notions, Book 1 of the Elements [Euc56]

This postulate requires that the all right angles obtained by any pair of straight lines are equal.
And the final postulate is known as the parallel postulate:

Postulate V. That, if a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.

This is a more complex statement than the postulates I–IV, and its geometric meaning is
more difficult to understand immediately. The independence of the postulate V from the other
postulates, i.e., whether or not I–IV implies V, remained as an open problem until the nineteenth
century. Under the way of discussions on this problem, the following facts are obtained:

Fact 1.1. The parallel postulate V is equivalent to that “there is the unique straight line passing
through the given point and parallel to the given straight line”.

The geometry based on axiom system for Euclidean geometry without the parallel postulate is
called the absolute geometry.

Fact 1.2 (Lambert (1728–1777)). In absolute geometry, there exists a negative constant K such
that for all triangle ABC

∠A+ ∠B+ ∠C− π = K4ABC

where 4ABC denotes the area of the triangle.

The problem of the independence of the parallel postulate was settled at the end of the 19th
century by Nikolai Lobachevsky (1792–1856), János Bolyai (1802–1860), or Carl Friedrich Gauss,
in the following way: Assume the following denial of the parallel line axiom in addition to the
axioms I–IV:

Postulate V’. There are at least two straight lines passing through the given point and parallel to
the given straight line.

Then they show that the consistent geometric argument can be established. Such a geometry
is called the non-Euclidean geometry.

However, this could be taken simply as a “play on words”. In order for non-Euclidean geometry
to be accepted as a mathematical theory, a “model” was necessary.

Before introducing the model of non-Euclidean geometry, let us review the model of Euclidean
geometry. The world of plane geometry can be realized in the Cartesian plane R2. In particular,
a point is an element of R2, and a straight line is a zero set{(x, y) ; ax + by + c = 0} (a, b, c ∈
R; (a, b) 6= (0, 0)) of a linear function. Then, the world satisfying the five conventions is realized.
In addition, the length of the line segments A = (x1, y1) and B = (x2, y2) connecting two points is
given by

AB =
√

(x2 − x1)2 + (y2 − y1)2,
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Figure 3: The upper-half plane

which is obtained by the Pythagorean theorem (Proposition 47 of the Elements). Thus, it seems
important to obtain the expression for the lengths from the postulates.

A model of non-Euclidean geometry—Upper-half space model

The non-Euclidean geometry is realized by the following model: The world is the upper-half plane

(1.1) H := {(x, y) ∈ R2 ; y > 0}

and a point is an element of H. We think that a line, or a straight line on H is

Ca,r := {(x, y) ∈ H ; (x− a)2 + y2 = a2} (a ∈ R, r > 0)(1.2)
(an upper-half of a circle centered at (a, 0) on x-axis), or

Lλ := {(λ, y) ∈ H ; y > 0} (λ ∈ R) (a vertical half-line).

Definition 1.3 (a tentative definition). The upper-half plane (1.1), in which curves as in (1.2)
are considered as straight lines, is called the hyperbolic plane.

Let us observe that the hyperbolic plane suffices the postulates I–IV and V’. The following fact
is obvious as seen in Figure 3 (a) and (b):

Lemma 1.4. The hyperbolic plane suffices the postulate I and V’.

To show postulates II and III are satisfied, we need to know how to measure “length”, or
“distance”. To determine the distance of two points, we need some additional notions:

Definition 1.5 (A tentative definition of congruence). A bijection ϕ : H → H is called a congru-
ence if it maps an arbitrary line to a line.

By definition, it is obvious that a composition of congruences is also a congruence. The following
is obvious:

Lemma 1.6. For λ ∈ R, a reflection ϕλ about a vertical line Lλ is congruence, where

ϕλ : H 3 (x, y) 7→ (2λ− x, y) ∈ H.

Corollary 1.7. A horizontal translation τλ : (x, y) → (x+ λ, y) is a congruence.

Proof. τλ = ϕ0 ◦ ϕ−λ/2.

Lemma 1.8. An inversion ψr about an (Euclidean) circle C0,r is a congruence, where

ψr : H 3 (x, y) 7→ r2

x2 + y2
(x, y) ∈ H

Corollary 1.9. A dilation µr : (x, y) 7→ (rx, ry) (r > 0) is a congruence.
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Proof. µa4 = ψa ◦ ψ1/a.

We denote
dist(P,Q) = the distance of P and Q,

and require that differentiability of dist (as a function of four variables), and

(1.3) dist(P,Q) = dist(ϕ(P), ϕ(Q)) holds for each congruence ϕ.

Lemma 1.10. There exists a positive constant k such that

dist
(
(x, y), (x, y +∆y)

)
= k

∆y

y
+ o(∆y) (∆y → 0).

Proof. Since a horizontal translation τs in Corollary 1.7 is a congruence, we may assume that
x = 0. We set d(y,∆y) := dist

(
(0, y), (0, y+∆y)

)
. By differentiability, there exists a function δ(y)

in y such that d(y,∆y) = δ(y)∆y + o(∆y). Hence by (1.3),

d(y,∆y) = dist
(
(0, y), (0, y +∆y)

)
= dist

(
µr(0, y), µr(0, y +∆y)

)
= dist (0, r(y +∆y))

= δ(ry)r∆y + o(∆y),

and we have yδ(y) = ryδ(ry). Since y and r are arbitrary positive numbers, there exists a constant
k such that δ(y) = k/y.

We fix k in Lemma 1.10 throughout this section.

Corollary 1.11. The distance of P = (x, y1) and Q = (x, y2) (y1 < y2) is k log y2

y1
.

Proof. By Lemma 1.10,

dist(P,Q) =

∫ y2

y1

k

y
dy = k log

y2
y1

Lemma 1.12. Let Cc,r be a circle as in (1.2) passing through P = (x, y) and Q = (x+∆x, y+∆y),
where ∆x 6= 0, and set

(X,Y ) := ψ2r ◦ τ−c−r(x, y), (X +∆X,Y +∆Y ) := ψ2r ◦ τ−c−r(x+∆x, y +∆y).

Then ∆X = 0 and
∆Y

Y
=

√
(∆x)2 + (∆y)2

y
+ o

(√
(∆x)2 + (∆y)2

)
.

Corollary 1.13. Let γ(t) :=
(
x(t), y(t)

)
(a < t < b) be a parametrized curve in H. Then the

length of γ is given by

(1.4)
∫ b

a

k

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫
γ

ds,

(
ds2 := k2

dx2 + dy2

y2

)
.

Exercises

1-1 Show Lemma 1.12.

1-2 Let A be the intersection point of two lines C0,1 and Cm,r (r > 0, r2 −m2 > 1, r +m < 1),
and set B = (0,

√
r2 −m2), and C = (0, 1). Find a relation of a := dist(B,C), b := dist(C,A)

and c := dist(A,B), where dist(∗, ∗) is given by a length of the line segment joining two
points computed by (1.4).
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2 Surface of constant Gaussian Curvature

A quick review of surface theory

Immersed surfaces A C∞-map p : U → R3 defined on a domain U ⊂ R2 is called an immersion
or a parametrization of a regular surface if

(2.1) pu(u, v) :=
∂p

∂u
(u, v), and pv(u, v) :=

∂p

∂v
(u, v) are linearly independent

at each point (u, v) ∈ U . The unit normal vector field to an immersion p : U → R3 is a C∞-map
ν : U → R3 satisfying

(2.2) ν · pu = ν · pv = 0, |ν| = 1

for each point on U .
The first fundamental form ds2 is defined by

(2.3) ds2 := dp · dp = E du2 + 2F du dv +Gdv2,(
E := pu · pu, F := pu · pv = pv · pu, G := pv · pv

)
,

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).
The three functions E, F and G defined on U are called the coefficients of the first fundamental
form. On the other hand, the second fundamental form as

(2.4) II := −dν · dp = Ldu2 + 2M dudv +N dv2,(
L := −pu · νu,M := −pu · νv = −pv · νu, N := −pv · νv

)
.

Here, we used a relation νu · pv = (ν · pv)u − ν · pvu = 0− ν · pvu = −ν · puv = νv · pu. Define two
symmetric matrices

Î :=

(
E F
F G

)
=

(
pTu
pTv

)
(pu, pv), ÎI :=

(
L M
M N

)
= −

(
pTu
pTv

)
(νu, νv)

which are called the first and second fundamental matrices, respectively. Since EG − F 2 =
|pu|2|pv|2 − (pu · pv)2 > 0, the first fundamental matrix Î is a regular matrix. The area ele-
ment of the surface is defined as

(2.5) dA :=
√
EG− F 2 du dv.

Since Î is regular, the matrix

(2.6) A := Î −1 ÎI =

(
A1

1 A1
2

A2
1 A2

2

)
,

called the Weingarten matrix, is defined. The Gaussian curvature K and the mean curvature H
are defined as

(2.7) K := λ1λ2 = detA =
det ÎI

det Î
, H :=

1

2
(λ1 + λ2) =

1

2
trA,

both of which do not depend on the choice of parametrization.

20. June, 2025. Revised: 24. June, 2025)
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Figure 4: Gauss-Bonnet theorem for the sphere

Gauss-Bonnet theorem

Under the situation above, a parametrized curve γ : I → U (or its image γ̂ = p ◦ γ on the surface),
where I ⊂ R is an interval, is called pregeodesic if it satisfies

(2.8) det
(
γ̂′(t), γ̂′′(t), ν̂(t)

)
= 0

(
′ =

d

dt
, γ̂(t) = p ◦ γ(t), ν̂(t) = ν ◦ γ(t)

)
for all t ∈ I. On the other hand, γ is called a geodesic if it satisfies

(2.9) γ̂′′(t)× ν̂(t) = 0,

where “×” denotes the vector product of R3. In other words, the curve γ is a geodesic if and only
if the acceleration vector γ̂′′ is proportional to the normal of the surface. The following is obvious.

Lemma 2.1. A geodesic is a pregeodesic.

Definition 2.2. A (geodesic) triangle on the surface is a closed domain of the surface which is
homeomorphic to the closed disc, whose boundary consists of three segments AB, BC and CA of
pregeodesics, which is called the edge. Three points A, B, C where two of the edges meet together
are called vertices of the triangle. The angle of the triangle at the vertex A (resp. B, C) is the
angle of tangent vectors of the geodesics CA and AB at A (resp. AB and BC at B, BC and CA at
C).

Theorem 2.3 (Gauss-Bonnet theorem for triangles, [UY17, Theorem 10.6]). Let 4ABC be a
geodesic triangle as in Definition 2.2. Then

∠A+ ∠B+ ∠C = π +

∫∫
4ABC

K dA,

where K and dA are the Gaussian curvature and the area element, respectively.

Example 2.4. Let S2 be the unit sphere in R3. Then a pregeodesic is a great circle, that is,
the intersection of a plane passing through the center of the sphere and S2. Then for a geodesic
triangle of S2,

∠A+ ∠B+ ∠C = π + the area of the surface

holds because the Gaussian curvature of the surface is identically 1 (cf. Figure 4).
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Figure 5: Beltrami’s pseudosphere

Pseudospherical surfaces

Recall Lambet’s result introduced in the previous section:

Fact 2.5 (Lambert (1728–1777)). In absolute geometry, there exists a negative constant K such
that for all triangle ABC

∠A+ ∠B+ ∠C− π = K4ABC

where 4ABC denotes the area of the triangle.

Comparing this fact and Theorem 2.3, we notice that

A surface of constant negative Gaussian curvature K satisfies the Lambert’s theorem
if we consider a geodesic as a “line”.

In this sence, a surface of constant negative curvature can be regarded as a (local) realization of
non-Euclidean geometry. The precise meaning of realization, and “local” will be clarified later
lectures. By a homothetic change p 7→ cp, where c is a positive constant, the Gaussian curvature
of the surface is changed as K 7→ c−2K. So when we consider a realization of non-Euclidean
geometry, we may fix K = −1 without loss of generality.

Definition 2.6. A pseudospherical surface is a surface of constant Gaussian curvature −1.

Example 2.7 (The Pseudosphere). A surface

p(u, v) :=
(
sech v cosu, sech v sinu, v − tanh v

) (
(u, v) ∈ (−π, π)× (0,+∞)

)
is a pseudospherical surface, which is known as Beltrami’s pseudosphere (Fig. 5).
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Exercises

2-1 Let γ(t) =
(
x(t), z(t)

)
(γ ∈ I) be a parametrized curve on the xz-plane satisfying

(∗)
(
x′(t)

)2
+ (z′(t))2 = 1, x(t) > 0 (t ∈ I),

where I ⊂ R is an interval. Consider a surface

pγ(s, t) :=
(
x(t) cos s, x(t) sin s, z(t)

)
,

which is a surface of revolution of profile curve γ.

(1) Show that pγ is pseudospherical if and only if x′′ = x holds.
(Hint: use the ralation x′x′′ + z′z′′ = 0 obtained by differentiating (∗).)

(2) Can one choose I = R?

2-2 Let a and b be real numbers with a 6= 0. Compute the Gaussian curvature of the surface

p(u, v) = a(sech v cosu, sech v sinu, v − tanh v) + b(0, 0, u).
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3 Pseudospherical surfaces and asymptotic Chebyshev net

Preliminaries

Let U and V be domains of Rn

Definition 3.1. A C∞ bijection ϕ : V → U is said to be a diffeomorphism if its inverse is also of
class C∞.

Lemma 3.2. If ϕ : V → U is a diffeomorphism,

(Dϕ)ϕ−1(q) ◦
(
D(ϕ−1)

)
q
= idRn , and

(
D(ϕ−1)

)
ϕ(p)

◦ (Dϕ)p = idRn

hold at each point of q ∈ U and p ∈ V , where Dϕ : Rn → Rm and D(ϕ−1) : Rm → Rn denote the
differentials of the map ϕ and ϕ−1. (Dϕ)p is a non-singular matrix on each point of p ∈ V .

Remark 3.3. Define ϕ : R2 → R2 by (x, y) = ϕ(ξ, η) = (ξ3, η). Then the Jacobi matrix Dϕ is
computed as

Dϕ =

(
xξ xη
yξ yη

)
=

(
2ξ2 0
0 1

)
which is singular at the origin. Hence ϕ is not a diffeomorphism though it is a bijection.

Theorem 3.4 (The inverse function theorem). Let ϕ : U → Rn be a C∞-map defined on a domain
U ⊂ Rn and p ∈ U . Assume (Dϕ)p is non-singular. Then there exists a neighborhood V ⊂ U of p
such that ϕ|V : V → ϕ(V ) is a diffeomorphism. Moreover,

(
D(ϕ−1

)
ϕ(q)

= (Dϕ)−1
q holds for each

q ∈ V .

Change of Parameters

Let p : U → R3 be a regular parametrization of a surface in R3 and ϕ : V → U a diffeomorphism,
where U and V are domains of R2. Then

(3.1) p̃ := p ◦ ϕ : V → R3

gives another regular parametrization of a surface, whose image coincides with that of p. Such p̃
is said to be a parametrized surface obtained by the coordinate change ϕ of p.

Now we write ϕ : (ξ, η) → (u, v). Then by the chain rule, it holds that

(3.2) (p̃ξ, p̃η) = (uξpu + vξpv, uηpu + vηpv) = (pu, pv)J, where J := Dϕ =

(
uξ uη
vξ vη

)
,

here pu, pv, p̃ξ, p̃η are considered to be functions valued in the column-vectors.
We write the first fundamental form ds2 (resp. ds̃2) and the second fundamental form II (resp.

ĨI) of p (resp. p̃) as

ds2 = E du2 + 2F du dv +Gdv2, II = Ldu2 + 2M dudv +N dv2

ds̃2 = Ẽ dξ2 + 2F̃ dξ dη + G̃ dη2, ĨI = L̃ dξ2 + 2M̃ dξ dη + Ñ dη2

Since the unit normal vector ν̃ of p̃ coincides with ν ◦ ϕ, (3.2) yield(
Ẽ F̃

F̃ G̃

)
= JT

(
E F
F G

)
J,

(
L̃ M̃

M̃ Ñ

)
= JT

(
L M
M N

)
J.

27. June, 2025. Revised: 04. July, 2025
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This means that one obtain
ds2 = ds̃2, II = ĨI

by substituting
du = uξ dξ + uη dη, dv = vξ dξ + vη dη.

In other word, the first and second fundamental forms are invariant under changes of parameters.
Moreover, the Gaussian curvature K = (LN −M2)/(EG − F 2) is also invariant under change of
parameters.

Asymptotic parameters

For a surface of negative Gaussian curvature, there exists a parameter such that its second funda-
mental matrix is anti-diagonal, called an asymptotic coordinate system. In other words, a parameter
(u, v) is an asymptotic coordinate system if and only if the second fundamental form is in the form

II = 2M dudv.

To prove this fact, we prepare

Lemma 3.5. Let ω = αdu+β dv be a 1-form defined on a domain U of the uv-plane R2, where α
and β are functions in (u, v). Assume (α, β) 6= (0, 0) at P ∈ U . Then there exists a neighborhood
V ⊂ U of P and functions ϕ and ξ on V such that

ϕω = dξ, ϕ(Q) 6= 0 for Q ∈ V.

Proof. Let γ(s) =
(
u0(s), v0(s)

)
a curve on U defined on an interval I := (−ε, ε) (ε > 0) satisfying

γ(0) = P, γ′(s) 6= 0 (s ∈ I), and γ′(0) =
(
u′0(0), v̇

′
0(0)

)
satisfies

(3.3) α(P)u′0(0) + β(P)v′0(0) 6= 0.

Then for each s ∈ I, there exists a solution
(
(us(t), vs(t)

)
(t ∈ (−δs, δs)) of a system of ordinary

differential equations

d

dt
us(t) = −β(us(t), vs(t)),

d

dt
vs(t) = α(us(t), vs(t)), us(0) = u(s), vs(0) = v(s).

Then, by a regularity of the solution of ordinary differential equations with respect to parameters,
we obtain a smooth map

(s, t) 7→
(
u(s, t), v(s, t)

)
:=
(
us(t), vs(t)

)
.

In particular,(
u(0, 0), v(0, 0)

)
= P,

∂u

∂s
(0, 0) = u′0(0),

∂v

∂s
(0, 0) = v′0(0),

∂u

∂t
(0, 0) = −β(P), ∂v

∂t
(0, 0) = α(P)

hold. Hence by (3.3),

det

(
∂u
∂s (0, 0)

∂u
∂t (0, 0)

∂v
∂s (0, 0)

∂v
∂t (0, 0)

)
= det

(
u′0(0) −β(P)
v′0(0) α(P)

)
6= 0.

Thus, by the inverse function theorem, there exists a neighborhood V of P such that the map
(s, t) 7→ (u, v) is a diffeomorphism, that is, (s, t) is a new coordinate system on V ⊂ R2. Using this
parameter, we can write

ω = αdu+ β dv = α

(
∂u

∂s
ds+

∂u

∂t
dt

)
+ β

(
∂v

∂s
ds+

∂v

∂t
dt

)
= α(−β ds+ ut dt) + β(αds+ vt dt) = (utα+ vtβ)dt.

So, by setting ϕ := 1/(utα+ vtβ) and ξ = t, we have the conclusion.
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Remark 3.6. Lemma 3.5 implies that any 1-form on a domain of R2 is locally a non-zero function
multiple of an exact 1-form. The function ϕ in is called an integrating factor of the form ω.
Remark 3.7. Lemma 3.5 is the special (2-dimensional) case of Caratheodory’s principle, which is
often referred in the context of thermodynamics. In fact, Caratheodory’s principle says that for
any 1-form ω on n-manifold (or Rn), there exists an integrating factor if and only if ω ∧ dω 6= 0.

Proposition 3.8 (Asymptotic Coordinate system). Let p : U → R3 be a regular parametrization
of a surface in R3 whose Gaussian curvature is negative on U . Then for each P ∈ U , there exists
an asymptotic coordinate system on a neighborhood of P.

Proof. Write the second fundamental form of p as II = Ldu2 + 2M dudv + N dv2. Since the
Gaussian curvature is negative, −κ2 := LN−M2 is negative. When L(P) = 0, setting u = 1√

2
(s−t),

v = 1√
2
(s+ t) we get

II(P) = 2M(P) du dv =M(P)(ds− dt)(ds+ dt) =M ds2 −M dt2.

Since L(P) = 0, κ(P)2 = M2(P) 6= 0, and hence the first coefficient of II with respect to the
coordinate system (s, t) is not zero. Thus, we may assume L 6= 0 holds on a neighborhood of P,
without loss of generality.

When L 6= 0,

II = L

(
du+

M

L
dv

)2

+
LN −M2

L
dv2 = L

((
du+

M

L
dv

)2

−
(κ
L
dv
)2)

= L

(
du+

M + κ

L
dv

)(
du+

M − κ

L
dv

)
Then by Lemma 3.5, there exists functions ξ, η, ϕ and ψ such that ϕ(P) 6= 0, ψ(P) 6= 0 and

du+
M + κ

L
dv = ϕdξ, du+

M − κ

L
dv = ψ dη.

Here
det

(
ξu ξv
ηu ηv

)
=

1

ϕψ
det

(
1 M+κ

L

1 M−κ
L

)
=

1

ϕψ

2κ

L
6= 0

holds at P. Hence (s, t) 7→ (ξ, η) is a change of coordinates, and

II = 2M̃ dξ dη, (2M̃ = Lϕψ).

So (ξ, η) is an asymptotic coordinate system.

Asymptotic Chebyshev net

Theorem 3.9. For a each point P of a surface of constant negative Gaussian curvature −k2,
there exists a neighborhood U of P and coordinate system (ξ, η) such that the first and second
fundamental forms are in the form

(3.4) ds2 = dξ2 + 2 cos θ dξ dη + dη2, II = 2k sin θ dξ dη,

where θ is a smooth function in (ξ, η) with 0 < θ(ξ, η) < π.

Proof. By Proposition 3.8, there exists an asymptotic coordinate system (u, v) around P:

ds2 = E du2 + 2F du dv +Gdv2, II = 2M dudv.
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Then by the result in Exercise 5-1 of MTH.B4052, Ev = Gu = 0 holds. Since both E = pu · pu and
G = pv · pv are positive, we can write

E du2 =
(
e(u) du

)2
, G dv2 =

(
g(v) dv

)2
,

where e(u) and g(v) are positive functions in u and v, respectively. Set

ξ = ξ(u) =

∫ u

u0

e(t) dt, η = η(v) =

∫ v

v0

g(t) dt,

where P = (u0, v0). Then the map (u, v) 7→ (ξ(u), η(v)) is a coordinate change because e and g are
positive, and the first fundamental form and second fundamental form are written as

ds2 = dξ2 + 2F̃ dξ dη + d η2, II = 2M̃ dξ dη.

Since the Gaussian curvature K is −k2, we have

M̃2 = k2
(
1− F̃ 2

)
, that is, F̃ 2 +

(
M̃

k

)2

= 1.

So there exists a function θ such that

F̃ = cos θ, M̃ = k sin θ.

Since the surface is regular, 1− F̃ 2 = 1− cos2 θ > 0 holds. So θ can move on the interval (0, π) or
(π, 2π). In the latter case, replacing η by −η and θ by π − θ, we have the conclusion.

Remark 3.10. The parameter (ξ, η) as in (3.4) is called the asymptotic Chebyshev net.

Example 3.11. p(u, v) :=
(
sech v cosu, sech v sinu, v − tanh v

)
.

Exercises

3-1 Let a and b be real numbers with a 6= 0 and

p(u, v) = a(sech v cosu, sech v sinu, v − tanh v) + b(0, 0, u).

Find a coordinate change (u, v) 7→ (ξ, η) to an asymptotic Chebyshev net for p, and give an
explicit expression of θ as a function in (ξ, η).

3-2 Let (ξ, η) be an asymptotic Chebyshev net (3.4) on a surface. Assume another parameter
(x, y) is also an asymptotic Chebyshev net. Prove that (x, y) satisfies

(x, y) = (±ξ + x0,±η + y0) or (x, y) = (±η + x0,±ξ + y0)

where x0 and y0 are constants.

2Advanced Topics of Geometry A1
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4 A construction of pseudospherical surfaces

4.1 Gauss-Weingarten equation

Let p : U → R3 be a regular parametrization of a pseudospherical surface of constant Gaussian
curvature −1 defined on a domain U ⊂ R2. By the result of the previous lecture, we may assume
the coordinate system (x, y) on U is the asymptotic Chebyshev net:

(4.1) ds2 = dx2 + 2 cos θ dx dy + dy2, II = 2 sin θ dx dy,

where θ = θ(x, y) is a smooth function in (x, y) valued on an interval (0, π). Now we define a new
coordinate system (u, v) by

(4.2) x =
1

2
(u− v), y =

1

2
(u+ v),

and denote the new prametrization p((u − v)/2, (u + v)/2) by p(u, v). Then the first and second
fundamental forms are written as

(4.3) ds2 = cos2
θ

2
du2 + sin2

θ

2
dv2, II = cos

θ

2
sin

θ

2
(du2 − dv2).

Since |pu| = cos θ
2 , |pv| = sin θ

2 , and pu is perpendicular to pv, we can take the orthornomal frame
(e1, e2, e3) satisfying

(4.4) pu = cos
θ

2
e1, pv = sin

θ

2
e2, ν = e3,

where ν is the unit normal vector field of p. So we get the map

F := (e1, e2, e3) : U −→ SO(3)

called the frame or an adapted frame of the surface, here SO(3) is the set of 3× 3-orthogonal ma-
trices with positive determinant. The following formula is a consequence of the Gauss-Weingarten
equation (cf. Theorem 4.2 in MTH.B405, see also Exercise 4-2 in the same class).

Proposition 4.1. Under the situation above, the frame F satisfies{
Fu = FΩ
Fv = FΛ

; Ω =

 0 −θv/2 − sin θ
2

θv/2 0 0
sin θ

2 0 0

 , Λ =

 0 −θu/2 0
θu/2 0 cos θ

2

0 − cos θ
2 0

 .

Moreover, the function θ = θ(u, v) satisfies the sine-Gordon equation

(4.5) θuu − θvv = sin θ.

Proof. In spite of the direct conclusion of the Gauss-Weingarten equation, we’ll give a direct proof
for a sake of convenience. Differentiating the first equality of (4.4) in u, we have

puu = −θu
2

sin
θ

2
e1 + cos

θ

2
(e1)u,(4.6)

puu · e2 = cos
θ

2

(
(e1)u

)
· e2,(4.7)

puu · e3 = cos
θ

2

(
(e1)u

)
· e3(4.8)

04. July, 2025.
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where the third equality is nothing but the definition of the second fundamental form. On the
other hand, by the definition of the first and second fundamental forms, we have

sin
θ

2
puu · e2 = puu · pv = (pu · pv)u − pu · puv = −1

2
(pu · pu)v =

θv
2

sin
θ

2
cos

θ

2
,(4.9)

puu · e3 = puu · ν = cos
θ

2
sin

θ

2
.(4.10)

Since (e1)u · e1 = 1
2 (e1 · e1)u = 0, we have

(
e1
)
u
=
θv
2
e2 + sin

θ

2
e3,

which proves the first column of Ω. On the other hand,

0 = pvu · e3 =

(
sin

θ

2
e2

)
u

· e3 = sin
θ

2

(
e2
)
u
· e3,

proving the (3, 2)-component of Ω. Since F is orthogonal, Ω is skew-symmetric. Thus we get the
expression of Ω. The components of Λ are obtained in the similar way.

Remark 4.2. The equation (4.5) is equivalent to the equation

(4.11) θxy = sin θ,

which is the integrability condition with respect to the asymptotic Chebyshev net.
As a converse assertion, the fundamental theorem for surface theory deduces

Theorem 4.3. Let θ : U → (0, π) be a smooth function defined on a simply connected domain
U ⊂ R2 satisfying the sine-Gordon equation (4.5) Then there exists a regular parametrization
p : U → R3 of a pseudospherical surface whose first and second fundamental forms are written as
(4.3).

Example

As an example of Theorem 4.3, we construct the surfaces of revolution (cf. Exercise 2-1).

Sine-Gordon equation and the equation of pendulum: We assume the function θ = θ(u, v)
depends only on the variable v: θ = θ(v). Then the sine-Gordon equation turns to be

(4.12) θ̈ = − sin θ

(
˙ =

d

dv

)
,

which is the equation of the motion of pendulums. In particular,

(4.13)

(
θ̇

2

)2

+ sin2
θ

2
= E2

holds, where E is a non-negative constant. When E = 0, sin(θ/2) must be zero, which does
not satisfy θ ∈ (0, π). On the other hand, when E = 1, the solution is written in an elementary
function:

(4.14) θ = θ1 := 4 tan−1 e
v − 1

ev + 1
= 4 tan−1 tanh v
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Solving Gauss-Weingarten equation: In our case, the Gauss-Weingarten equation (Proposi-
tion 4.1) is rewritten as

(4.15)

{
Fu = FΩ
Fv = FΛ

; Ω =

 0 −θ̇/2 − sin θ
2

θ̇/2 0 0
sin θ

2 0 0

 , Λ =

0 0 0
0 0 cos θ

2

0 − cos θ
2 0

 .

Let

(4.16) c = c(v) :=
θ̇(v)

2E
, s = s(v) :=

1

E
sin

θ(v)

2
.

Then by (4.13) and (4.12), it holds that

(4.17) c2 + s2 = 1, ċ = − cos
θ

2
s, ṡ = cos

θ

2
c.

Using these, we set the orthogonal matrix P = P (v) by

(4.18) P :=

1 0 0
0 c −s
0 s c

 .

Note that the third column of P is the 0-eigenvector of Ω. Since

Ω̃ := P−1ΩP = PTΩP = E

0 −1 0
1 0 0
0 0 0


and both Ω and P are functions depending only on v, the first equation of (4.15) is reduced to

(FP )u = (FP )Ω̃,

which can be solved as

FP = F0(v)R(u), R(u) :=

cosEu − sinEu 0
sinEu cosEu 0

0 0 1

 ,

where F0 is an SO(3)-valued function in v. Substituting this into the second equation of (4.15),

Ḟ0 = (FPRT )vFvPR
T + F ṖRT = FΛPRT + F ṖRT

= F0RP
TΛPRT + F0RP

T ṖRT = F0R
(
PTΛP + PT Ṗ

)
RT = O

holds because of (4.17) and the definition of Λ. Hence F0(v) is constant, and by choosing an
appropriate initial condition, we obtain

(4.19) F = (e1, e2, e3) = R(u)P (v).

Hence we have

e1 =

cosEu
sinEu

0

 = u1, e2 = c(v)

− sinEu
cosEu

0

+

 0
0
s(v)

 =
θ̇

2E
u2 +

1

E
sin

θ

2
u3,

where R = (u1,u2,u3). By (4.4), the corresponding surface p = p(u, v) satisfies

(4.20) dp = cos
θ(v)

2
v1(u) du+

θ̇(v)

2E
sin

θ(v)

2
v2(u) dv +

1

E
sin

θ(v)

2
v3 dv.

Integrating this, we obtain

p =
−2

E
cos

θ

2
v2 +

1

E
v3

∫ v

v0

sin
θ(t)

2
dt,

which is a surface of revolution.
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Exercises

4-1 The constant function θ(u, v) = 0 is a solution of the sine-Gordon equation (4.5) although it
does not satisfy the condition 0 < θ < π. In this case, explain what happens on the solution
of (??) and resulting “surface” p(u, v).

4-2 Let θ = θ(x, y) be a solution of the sine-Gordon equation θxy = sin θ. Assume a function ϕ
satisfies (

ϕ− θ

2

)
x

= a sin
ϕ+ θ

2
,

(
ϕ+ θ

2

)
y

=
1

a
sin

ϕ− θ

2
,

where a is a non-zero constant. Prove that ϕ is also a solution of the sine-Gordon equation.
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Glossary

absolute geometry 絶対幾何学，中立幾何学, 2
angle 角, 6
asymptotic coordinate system 漸近座標系, 10
axiom system 公理系, 2

Beltrami’s pseudosphere ベルトラミの擬球面, 7
bijection 全単射, 9

Cartesian plane, デカルト平面，座標平面, 2
chain ruleチェイン・ルール（合成関数の微分公式）,

9
circle 円, 1
congruence 合同変換, 3

diffeomorphism 微分同相, 9

edge 辺, 6
Elements 原論, 1

Gaussian curvature ガウス曲率, 5
geodesic 測地線, 6

homothetic 相似, 7
hyperbolic plane 双曲平面, 3

immersion はめ込み, 5
integrating factor 積分因子，積分因数, 11
interval 区間, 6

line segment 線分, 1

mean curvature 平均曲率, 5

non-Euclidean geometry 非ユークリッド幾何, 1
non-singular matrix 非特異行列，正則行列, 9

parallel postulate 平行線公準, 1
parametrization パラメータ表示, 5
pendulum 振り子, 14
pregeodesic 準測地線, 6
profile curve 母線, 8
pseudospherical surface 擬球面的曲面, 7
Pythagorean theorem ピタゴラスの定理, 3

right angle 直角, 1

straight line 直線, 3
surface of revolution 回転面, 8

triangle 三角形, 6

unit normal vector 単位法ベクトル, 5
upper-half plane 上半平面, 3

vertex 頂点 (pl. vertices), 6
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